Q.1) Bar \(BDE \) is attached to two links \(AB \) and \(CD \). Knowing that at the instant shown link \(AB \) rotates with a constant angular velocity of 3 rad/s clockwise, determine the acceleration \((a)\) of point \(D \), \((b)\) of point \(E \).

Q.2) Collar \(D \) slides on a fixed horizontal rod with a constant velocity of 0.6 m/s to the right. Knowing that at the instant shown \(x=0 \), determine \((a)\) the angular acceleration of bar \(BD \), \((b)\) the angular acceleration of bar \(AB \).
Q.3) The cross $BHDF$ is supported by two links AB and DE. Knowing that at the instant shown link AB rotates with a constant angular velocity of 4 rad/s clockwise, determine (a) the angular velocity of the cross, (b) the angular acceleration of the cross, (c) the acceleration of point H.

Q.4) Collar D slides on a fixed vertical rod. Knowing that the disk has a constant angular velocity of 15 rad/s clockwise, determine the angular acceleration of bar BD and the acceleration of collar D when (a) $\theta=0$, (b) $\theta=90^\circ$, (c) $\theta=180^\circ$.