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Extension to the Messinger Model for Aircraft Icing

Tim G. Myers¤

Cran� eld University, Cran� eld, England MK43 0AL, United Kingdom

A one-dimensional mathematical model is developed describing ice growth due to supercooled � uid impacting
on a solid substrate. When rime ice forms, the ice thickness is determined by a simple mass balance. The leading-
order temperature pro� le through the ice is then obtained as a function of time, the ambient conditions, and
the ice thickness. When glaze ice forms, the energy equation and mass balance are combined to provide a single
� rst-order nonlinear differential equation for the ice thickness, which is solved numerically. Once the ice thickness
is obtained, the water height and the temperatures in the layers may be calculated. The method for extending the
one-dimensionalmodel to two and three dimensions is described. Ice growth rates and freezing fractions predicted
by the current method are compared with the Messinger model. The Messinger model is shown to be a limiting
case of the present method.

Nomenclature
B.t/ = ice layer thickness, m
Bg = ice thickness at which glaze � rst appears, m
OB = height scale, m

c = speci� c heat, J/kg K
e = saturation vapor pressure (temperature dependent), Pa
e0 = vapor pressure constant, Pa/K
F = freezing fraction
G = liquid water content, kg/m3

NHx y = heat transfer coef� cient between components
x and y, W/m2 K

h.t/ = water layer thickness, m
Le = Lewis number, ·a=.ca¹a )
L E = latent heat of evaporation, J/kg
L F = latent heat of fusion, J/kg
L s = latent heat of sublimation, J/kg
Pm = mass � ux term, kg
p0 = ambient pressure, Pa
Q = energy terms in Messinger model, J
Q 0 = energy terms of current model, J
q = Q 0=.µ ¡ Ta/, J/K
T .z; t/ = ice temperature, function of z and t , K
T f = freezing temperature, K
t = time, s
tg = time at which glaze � rst appears, s
Ot = timescale, s
W = freestream velocity, m/s
z = vertical coordinate
¯ = collection ef� ciency
° = ratio of speci� c heats of air
² = small parameter
µ.z; t/ = water temperature, function of z and t , K
· = thermal conductivity,W/m K
½ = density, kg/m3

Á = fraction of water remaining liquid
Â = evaporationcoef� cient »0:622 NHas L E =ca p0 Le2=3, m/s
Âs = sublimationcoef� cient »0:622 NHas L s=ca p0 Le2=3, m/s

Subscripts

a = air
d = droplets
g = glaze
i = ice
r = rime
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s = substrate
w = water

I. Introduction

I CE growth on aircraft has long been recognized as a funda-
mental problemin the aerospace industry.Consequently,numer-

ous methods have been developed to combat the problem, such as
the use of freezing point depressants, thermal melting, and surface
deformation.1 All of these have various drawbacks including the
need to compromise on design to install such a system or simply
high running costs. For example, a typical thermal antiicing system
for along-rangepassenger jet consumes of the order of 105 W when
active.

As part of the ongoing battle to combat and understand the prob-
lem of ice accretion, a number of ice prediction codes have been-
developed, such as LEWICE, TRAJICE, ONERA, and subsequent
improvements.2¡5 These codes are extremely complex, in that air-
� ow, droplet trajectories, and a variety of parameters must be com-
puted before commencing the icing calculation. Essential to this
icing calculation is the energy balance, � rst set out by Messinger.6

Subsequent enhancements to the Messinger model, such as the in-
clusion of temperature rise due to compressible � ow or the addition
of an energy source at the substrate, have improved the model’s
applicability.2;7;8 However, the basic form of the model has not al-
tered since its inception. The purpose of the present work is to
improve on this model.

The Messinger6 model in its original form is a one-dimensional,
equilibrium energy balance, designed to analyze “the conditions
that govern the equilibrium temperature of an insulated, unheated
surface exposed to icing.” Because the temperature is set to its equi-
librium value, the transient behavior of an ice accretion cannot not
be captured. For example, in a one-step icing calculation, at the
transition from rime ice to glaze ice growth the freezing fraction,
de� ned by Messinger, switches instantaneouslyfrom the rime value
of unity to another constant value, less than unity, and retains this
new value for all time. In reality the freezing fraction will decrease
monotonically from its initial rime value of unity to its � nal, equi-
librium value. This is well known from studies of ice accretion
based on the Stefan approach (for example, see Refs. 9 and 10). The
freezing fraction predicted by Messinger6 is, therefore, always less
than the true freezing fraction. Another limitation of the Messinger
model is that the ice and water layers are isothermal,and so conduc-
tion through these layers cannot be accounted for. The substrate is
assumed insulated, and so conduction is removed there also. With
glaze ice, due to the � ow and impact of incomingdroplets, the water
layer may be well mixed, in which case the isothermal assumption
may be approximately valid; this will not be the case in the ice
layer. Because this model does not allow heat to be conductedaway
from the ice/water interface, the energy in this region can only be
balanced by the latent heat production as ice forms. In reality, the
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supercooledwater and the subfreezingice layer will permit conduc-
tion and so cool the interface, leading to an increase in ice produc-
tion. For these reasons, the Messingermodel must always predictas
lower rate of ice accretion than occurs in practice. In certain cases
of interest, this discrepancy may be small, but, as the current work
will show, conduction is in general important in the ice accretion
process.

The importance of conduction through the ice has been recog-
nized by a number of workers (for example, see Refs. 10–12). In
Ref. 11, the approach adopted by Messinger6 is employed, namely,
to add an energy term to a static balance. This improves on the
Messinger approximation but does not truly re� ect the conduction.
The approach adopted in Refs. 10 and 12 and related works cor-
rectly incorporates conduction and the effect of a phase change. In
Ref. 12, a � nite differencescheme is employed to solve a set of one-
dimensional partial differential equations describing the heat � ow
through a composite layer including phase change. In Ref. 10, the
authors employ a � nite element method, developed in Ref. 13, to
solve the two-dimensionalsystem of equations.The scheme runs on
a supercomputer. Because of the model’s complexity it is unlikely
to be a simple addition to an icing code.

The work described in the current paper forms part of the
ICECREMO project, to develop a three-dimensional aircraft ic-
ing code (see Acknowledgment). The method developed involves
solving heat equations in the ice and water layers. At the moving
ice/water interface, the energy balance leads to a phase change or
Stefan condition,9;14 which takes the form of a � rst-order ordinary
differential equation. This contains all of the terms of the standard
Messinger6 model, aswell as conductionterms.In generalit requires
numericalsolving.The initialequationsdescribingthe thermalprob-
lem are equivalent to those described in Refs. 10 and 13. However,
in the followingwork it is shown that it is not necessary to solve the
full, complex system of equations. A much simpler system, which
exploits that the ice growth rate is considerablyslower than the heat
conduction rate, adequately describes the problem. This method is
suf� ciently simple to allow it to be used in icing codes in much
the same way the Messinger6 model is currentlyused. Furthermore,
the method may be easily adapted to three dimensions, including a
model for runback water. This is currently carried out in the proto-
type ICECREMO code. A simple method for adapting the model
to deal with � owing water is described in Sec. VII. A much more
computationallyexpensivemethod, which is unlikely to be suitable
for an icing code, is described in Ref. 15.

In the following section the Messinger6 model is described in de-
tail. In Sec. III, the mathematical formulation of the problem is pro-
vided. The energy terms of the Messinger model may then be seen
as providingboundary conditions for the mathematical problem. In
Sec. IV, the equations appropriate to rime ice growth are solved ap-
proximately.The glaze ice problemis dealtwith in Sec. V. Formulas
are given for the ice thickness and time when glaze � rst appears.
In Sec. VI, the solution method is detailed, and results showing
the growth of ice and water over time are presented. These results
are shown to compare well with experimental data. The method by
which the one-dimensionalmodel may be extendedto deal with two
and three dimensions is described in Sec. VII. The glaze model is
compared to the Messinger model in Sec. VIII. This shows that the
two approaches are similar, with the exceptions that the Messinger
model neglects conductionterms and cannotbe used to � nd temper-
aturepro� les.The importanceof conductionis demonstratedand the
Messingermodel is shown to be a limitingcase of the currentmodel.

II. Messinger6 Model
The basis of the Messinger6 model is an energy balance. This

balance relies on equating the heat lost from the ice and wa-
ter accretion to the air and the production of latent heat due to
ice growth. The mechanisms for losing energy are 1) convective
heat transfer at the water surface, Qc D NHaw.Tw ¡ Ta/; 2) evapo-
rative heat loss, Qe D Â[e.Tw/ ¡ e.Ta/]; and 3) cooling by incom-
ing droplets, Qd D ¯WGcw.Tw ¡ Td /. Those for gainingenergy are
1) kinetic energy of incoming droplets, Qk D .¯W G/W 2=2; 2) re-
leaseof latentheat, Q l D ½L F .@ B=@t/; and3)aerodynamicheating,
Qa D r NHaw W 2=2ca .

The air temperature in Qc and Qe is frequently replaced by the
dry adiabatic recovery. The recovery temperature is a consequence
of the air compressibility; it is described in detail in Refs. 2, 4, 7,
and 8. However, in the following work, the notation is considerably
reduced by the use of a single temperature in the air, droplets, and
boundary layer. This restriction is easily removed. Water � ow will
also affect the heat balance; this is discussed in Sec. VII. Further
information on energy sources in a freezing system may be found
in Refs. 1, 16, and 17.

Balancing all of the energy terms leads to

Qc C Qe C Qd D Q k C Ql C Qa

From this heat balance, an estimate for the freezing fraction F
(the mass fraction of water that will turn to ice as it encounters
the aircraft surface) can be obtained by setting the temperature in
the ice and water layers to zero. A freezing fraction between 0 and
1 is taken as correct and used in subsequent calculations for glaze
ice growth, with the average temperatureheld at zero degrees. If the
calculation returns a freezing fractiongreater than 1, then only rime
ice will occur. Because the freezing fraction is physically restricted
to valuesbetween0 and 1, it is reset to 1 and the averagetemperature
recalculated. Similarly, if the freezing fraction is found to be less
than zero, then it is taken as identicallyzero and the (above freezing)
average temperature estimated.

In aircraft icing codes, the icing calculation represents only one
part of the problem. It is also necessary to calculate the air� ow and
droplettrajectories;themethodis detailedin Refs. 1, 2, and 8. Hence
all of the given energy terms are known, having being determined
as part of the computational � uid dynamics (CFD) calculation. In
the present work, these values will be assumed to be constant. In
reality as the ice grows the values may vary and so may require
recalculating and the new values employed in the energy balance.
Taking constant parameter values could be viewed as dealing with
only a single step of a multi-time-step calculation, and the values
would subsequentlybe adjusted to new constants for the following
time step.

III. Mathematical Model
Although the Messinger6 model has been used for a number of

years to predict aircraft ice growth, a more rigorous mathematical
formulation should provide signi� cantly more information.For ex-
ample, solving the heat equations in the ice and water will give
detailed information on the temperature pro� les and so improve
the heat transfer estimates.An exact formula for the ice thicknessat
which the transitionfrom rime to glazeoccursmay also be obtained.

A. Model Assumptions
To simplify the problem, a number of assumptions will now be

made.
1) The evaporation function e.T /, required for Qe , is approxi-

mated by a sixth-order polynomial in Ref. 18 over the range Ta 2
[233; 320] K. Over the range [257, 273.15] a good linear approx-
imation to this curve is

e.T / ¼ ¡6:803 £ 103 C e0T (1)

where e0 D 27:03. This is accurate to within 8% over the speci� ed
range.

2) The physical properties of the ice and water do not vary with
temperature. However, the ice density will be allowed to take two
distinct values, ½r and ½g , depending on whether rime or glaze ice
forms. The transition between the two is assumed to occur instan-
taneously.

3) The substrate temperature is � xed (and known). This requires
the substrate to have high conductivity and a thermal mass much
greater than that of the ice formation.

4) The droplet temperature, air temperature, and recovery tem-
perature are taken as equal. This restriction may be easily altered.

5) The phase change occurs at a single temperature T f .
These assumptions leave the aerodynamic heating and kinetic

energy terms unchangedfrom the precedingsection.The convective
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heat transfer, evaporation, and cooling by incoming droplets terms
may now be expressed in the form

Q 0
c D NHaw[µ.B C h; t/ ¡ Ta] D qc[µ .B C h; t/ ¡ Ta ]

Q 0
e D Âe0[µ .B C h; t/ ¡ Ta ] D qe[µ.B C h; t/ ¡ Ta ]

Q 0
d D ¯W Gcw[µ.B C h; t/ ¡ Ta ] D qd[µ.B C h; t/ ¡ Ta ]

Primes are employed to distinguish the current energy terms, which
involve the as yet unknown air/water interface temperature, from
those of the Messinger6 model, which assumes a constant water
temperature, µ D Tw .

For air� ow over ice, the convectiveheat transfer and evaporation
terms become

Q 0
ci D NHai[T .B; t/ ¡ Ta] D qci[T .B; t/ ¡ Ta]

Q 0
s D Âse0[T .B; t/ ¡ Ta ] D qs[T .B; t/ ¡ Ta ]

where Âs is the sublimation coef� cient. The aerodynamic heating
term also changes,

Qai D r NHai W
2
¯

2ca

B. Problem Formulation
The following analysis is based on the standard method of spec-

ifying a phase change or Stefan problem. Stefan problems are used
extensively in the investigation of melting or solidi� cation. Math-
ematically equivalent problems arise in the study of diffusion and
chemical reactions.9;14

Consider the situation shown in Fig. 1. An ice layer of thickness
B.t/ rests on top of a solid substrate. For the case of glaze ice, a
water layer of thickness h.t/ will cover the ice. The temperature
in the ice and water is denoted by T .z; t/ and µ.z; t/, respectively.
In the following analysis the model for glaze ice growth will be
speci� ed becausemost of the rime ice analysismay be recoveredby
setting the water thickness h to zero in the appropriate equations.
Whenever any other difference appears, the correct form for rime
ice will also be given.

The Stefan problemis governedby four equations:heat equations
in the ice and water, a mass balance, and a phase change or Stefan
condition at the ice/water interface:

@T

@t
D

·i

½i ci

@2T

@z2
(2)

@µ

@t
D ·w

½wcw

@2µ

@z2
(3)

½i
@ B

@t
C ½w

@h

@t
D ¯WG (4)

½i L F
@B

@t
D ·i

@T

@z
¡ ·w

@µ

@z
(5)

Note that the ice density ½i in Eqs. (4) and (5) may take different
values dependingon whether rime or glaze ice forms. In the current
work, only two distinct values, ½r and ½g , will be employed, and
the transitionbetween the two is assumed to be instantaneous.More
complex formulas may be employed;however, care should be taken
when integratingEqs. (4) and (5) if these valuesare time dependent.

Fig. 1 Schematic of the ice and water system.

The Stefan condition (5) is a straightforward energy balance. It
may also be interpreted as stating that the velocity of the phase
change boundary is proportionalto the temperaturegradientsacross
the boundary.The Stefan condition is similar to the Messinger6 en-
ergy balance in the form of a differentialequation. However, unlike
the Messinger model, this approach requires knowledge of the tem-
perature gradients in each layer. Hence the heat equations (2) and
(3) must be analyzed to solve the problem.

To determine the temperature in each layer, boundary and initial
conditionsmust � rst be speci� ed. These are based on the following
assumptions:

1) The ice is in perfect thermal contact with the substrate, which
has high conductivity and a thermal mass much greater than that of
the ice accretion:

T .0; t/ D Ts (6)

2) The temperature is continuous at the phase change boundary
and equal to the freezing temperature:

T .B; t/ D µ.B; t/ D T f (7)

This conditionis not imposed for thecase of rime ice.For generality,
the freezing temperature T f will be left unspeci� ed throughout the
following analysis; however, in all numerical calculations its value
is set to 273.15 K.

3) At the air/water interface, a standard radiation boundary con-
dition with an added heat � ux is imposed,19 stating that the heat
� ux at the surface is determined by convection,heat from incoming
droplets, evaporation,aerodynamic heating, and kinetic energy:

¡·w

@µ

@z
D .Q 0

c C Q 0
e C Q 0

d/ ¡ .Qa C Qk/ (8)

¡·w

@µ

@z
D .qc C qe C qd /.µ ¡ Ta/ ¡ .Qa C Q k/; z D B C h

(9)

For rime ice the equivalent boundary condition is

¡·i
@T

@z
D .Q 0

ci C Q 0
s C Q 0

d/ ¡ .Qa C Qk/ (10)

¡·i
@T

@z
D .qci C qs C qd/.T ¡ Ta/ ¡ .Qai C Qk C ¯W GL F /

z D B (11)

4) The substrate is initially clean:

B D h D 0; t D 0 (12)

These conditions are suf� cient to determine fully the temperature
pro� les and ice and water layer thicknesses.

Note that all of the terms of the Messinger6 energy balance have
now appeared,either in the Stefan energybalanceor in the boundary
conditions.

IV. Rime Ice Growth
The ice thickness in a rime calculation follows trivially from the

mass balance, Eq. (4), with h set to zero:

B D .¯W G=½r /t (13)

The temperature pro� le may be obtained by considering an asymp-
totic expansion of Eq. (2). Taking only the leading order term will
give a suf� ciently accurate solution provided the lower-order cor-
rection terms are small.

To determine the asymptotic solution, denote a typical height
scale OB; the correspondingtimescale Ot is determined from Eq. (13).
Using these scales to nondimensionalizeEq. (2) leads to

@2 NT
@ Nz2

D ¯W Gci
OB

·i

@ NT
@ Nt

D ²
@ NT
@ Nt

(14)

where overbars denote dimensionless quantities.
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Table 1 Parameter values used
for Figs. 2–5

Parameter Value

ca , J/kg K 1014
ci , J/kg K 2050
cw , J/kg K 4218
e0 , Pa/K 27.03
G, kg/m3 0.001
NHaw , W/m2 K 500
NHis , W/m2 K 1000

·i , W/m K 2.18
·w , W/m K 0.571
Le 13.4
L F , J/kg 3:344£ 105

L E , J/kg 2:26 £ 106

p0, Pa 6:3 £ 104

W , m/s 90
¯ 0.55
½g , kg/m3 917
½r , kg/m3 880
½w , kg/m3 1000
Â , m/s 11.0

Equation (14) may be solved in the form of a series in powers of
² , provided ² ¿ 1. This occurs if the typical height of the accretion
satis� es

OB ¿ ·i =¯W Gci (15)

Taking typical values for the constants, given in Table 1, indicates
·i =¯W Gci D 2:4 cm, that is, the series solution will be valid for
ice thicknesses considerably less than 2.4 cm. The leading-order
problem, in dimensional form, is then speci� ed by

@2T

@z2
D 0 (16)

First- and higher-order corrections will not be investigated in the
present work. Equation (16) indicates that the leading-order tem-
perature pro� le is linear in z. It may, however, be nonlinear in time,
which enters through the moving boundary conditions. Integrating
Eq. (16) twice and applying conditions (6) and (11), gives

T D Ts C
Qai C Qk C ¯WG L F ¡ .qci C qd C qs /.Ts ¡ Ta/

·i C B.qci C qd C qs/
z

(17)

The reduction of the heat equation (2) from a partial differential
equation to an ordinary differential equation [Eq. (16)] produces
what is termed the quasi- or pseudosteady problem because time
only enters through the moving boundary conditions, applied at
z D B.t/. The physical interpretationof this is that the timescale for
ice growth, determined by the amount of incoming � uid, is much
slower than that for conduction through the ice. Therefore the tem-
peraturehas time to equilibrateas the ice slowlyaccumulates.Quasi-
steady problems typically arise when the region of interest is thin.
Examples may be found in numerous physical situations including
reaction-diffusionsystems20 or viscous � ow.21;22 They are a partic-
ular example of a singular perturbation (for example, see Ref. 23)
because neglecting the time derivative means that the solution be-
comes invalid as t ! 0 and an initial conditionmay not be satis� ed.
This singular limit is not considered in the current analysis.

V. Glaze Ice Growth
With the substrate temperature � xed below freezing and super-

cooled droplets impacting on the surface, the ice growth must occur
in two distinct stages. During the � rst stage, all of the incoming
water freezes almost instantaneously,whereas in the second stage,
both water and ice develop simultaneously. This was also noted in
Ref. 10. The physical reason for this two-stage process is that the
model requiresgood heat transfer between the substrateand incom-
ing � uid. The initial incoming water must, therefore, immediately
adopt the subfreezing substrate temperature and, because it has a

nucleation site, freeze. Only when there is a suf� ciently thick insu-
lating layer and enough energy has been introduced into the system
can water appear.This will be demonstratedmathematically later in
this section. Note that this layer may be extremely thin in relatively
mild conditions and involve only a fraction of an initial impacting
droplet. The freezing of even a very small proportion of a droplet
may provide suf� cient latent heat for the remainder to heat up and
stay liquid and � ow over the surface as runback. This is a conse-
quence of the assumption that the droplets are supercooled and the
substrate has a � xed, subzero temperature.

Using a similar argument to that in the precedingsection, the heat
equations may be simpli� ed to quasi-steady forms:

@2T

@z2
¼ 0;

@2µ

@z2
¼ 0 (18)

provided

OB ¿
·i

.1 ¡ Á/¯W Gci
»

0:024

1 ¡ Á
m

Oh ¿ ·w

Á¯WGcw

» 0:003

Á
m

where Á is the fraction of water that remains liquid, and so the
argument leading to Eq. (16) is strengthened, with 2.4 cm being a
conservative estimate for the maximum limit of the ice thickness.
The water layer, however, must remain thin (unless there is a slow
buildup of water, Á ¿ 1, which allows time for the temperature to
adjust), with 3 mm being the lower value of the estimate. This is
still well within the limit of water thicknesses expected in aircraft
icing conditions.

If the water and ice layers do satisfy the preceding inequalities,
the temperature in the ice is

T D [.T f ¡ Ts /=B]z C Ts (19)

where Eqs. (6) and (7) have been imposed. The temperature in the
water is

µ D T f C
Qa C Qk ¡ .qc C qd C qe/.T f ¡ Ta/

·w C h.qc C qd C qe/
.z ¡ B/ (20)

where Eqs. (7) and (9) have been imposed.
In the earlier rime ice example, the ice thickness was obtained

from the mass balance without knowledge of the temperature pro-
� le. In the present case, the problem is coupled; the temperatures
speci� ed by Eqs. (19) and (20) depend on the ice and water heights,
which in turn depend on the temperature through Eq. (5).

To solve the coupledproblem, � rst integrate the mass balance (4)
to obtain an expression for h as a function of B and t :

h D .¯WG=½w/.t ¡ tg/ ¡ .½g=½w/.B ¡ Bg/ (21)

This involves the constants of integration Bg and tg , the ice thick-
ness and time at which water � rst appears. These are determined
by a continuity argument, which is most easily followed after an
expression has been obtained for the ice growth rate.

Differentiating Eqs. (19) and (20) provides expressions for the
temperature gradients, which, together with Eq. (21) may be sub-
stituted into the Stefan condition, Eq. (5), to provide a � rst-order
nonlinear ordinary differential equation for the ice thickness:

½g L F
@ B

@t
D

·i .T f ¡ Ts /

B
¡ ·w

Qa C Qk ¡ .qc C qd C qe/.T f ¡ Ta/

·w C h.qc C qd C qe/

(22)

D
·i .T f ¡ Ts/

B

¡ ·w½w

Qa C Qk ¡ .qc C qd C qe/.T f ¡ Ta/

·w½w C [¯W G.t ¡ tg/ ¡ ½g.B ¡ Bg/].qc C qd C qe/

(23)

The rime ice model of the preceding section has the ice growth
rate speci� ed by Eq. (13); the water thickness and growth rate are
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both zero. For a smooth transition from the rime to glaze models,
the ice and water thicknessesand growth rates must be continuous.
To determine when this occurs, the ice mass growth rate from the
mass balance (4) is substituted into the Stefan condition (5) to give

L F .¯W G/ D ·i .T f ¡ Ts/=Bg

¡ [Qa C Qk ¡ .qc C qd C qe/.T f ¡ Ta/] (24)

Rearranging this provides an expression for Bg :

Bg D
·i .T f ¡ Ts/

¯WG L F C [Qa C Qk ¡ .qc C qd C qe/.T f ¡ Ta/]
(25)

This is the ice thickness at which glaze will � rst appear. This ex-
plicit formula shows how Bg dependson the ambient conditions.An
important feature of the equation is that it allows positive, negative,
and even in� nite values for Bg . These may be interpreted in the fol-
lowing way. If 0 < Bg < 1, then Eq. (25) indicatesthe ice thickness
at which glaze � rst appears. An in� nite or negative value for Bg in-
dicates glaze ice will never appear. This could occur either because
the numerator T f ¡ Ts < 0, that is, the substrate is too warm for any
ice to grow. Alternatively, the denominator of Eq. (25) is less than
or equal to zero, in which case there will never be enough energy in
the system to produce water, and the accretion is pure rime, for all
time. This is discussed in greater detail in Sec. VIII.

Because the ice thickness must be continuous between the two
growth regimes, the time when glaze � rst appears is determined by
comparison with Eq. (13):

tg D .½r =¯W G/Bg (26)

An a priori proof that the assumption T .0; t/ D Ts requires initial
rime ice growth is as follows. If, instead of initial rime ice growth,
glaze or water appears � rst, then the initial conditions on the mass
balance Eq. (4) and the Stefan condition (23) are B D h D 0. Equa-
tion (23) shows @ B=@ t ! 1, due to the 1=B dependence. To con-
serve mass, Eq. (4) then indicates that @h=@t ! ¡1. Because h is
initially zero, this indicates that the water height immediately be-
comes negative. This is clearly unphysical, and the only reasonable
assumption to draw is that when glaze ice � rst appears B D Bg > 0.
However, this restrictionon Bg may not be very strong; for example,
in moderate conditions Bg may be extremely small and the initial
rime phase may only contribute a small fraction of the total ice ac-
cretion. An earlier work, which includes a model for heat transfer
between the ice and substrate, permits solutions in which initially
glaze ice or even pure water may develop.24

VI. Solution Method and Results
The method for solving an ice accretion problem under known

ambient conditions proceeds as follows.
1) Calculate all of the necessary parameter values and determine

the ice thickness and time at which glaze � rst appears, Bg , tg , via
Eqs. (25) and (26).

2) If Bg · 0, this indicates the model assumptionsare invalid and
glaze ice never forms. Alternatively, if tg is less than the required
exposure time to icing conditions, texp , there will not be suf� cient
time for glaze to form. In either case, the ice thicknessis determined
by Eq. (13), the temperature throughout the ice is given by Eq. (17),
and the calculation is terminated here.

3) If Bg > 0 and tg < texp , then glaze ice will occurduring the icing
calculation. The ice thickness is determined by numerical integra-
tion of Eq. (23). Once B.t/ is known, the water thickness and the
ice and water temperatures are given by Eqs. (21), (19), and (20),
respectively.

A. Ice Growth Results
To demonstrate the described method, two icing calculations are

shown in Fig. 2. These are for air temperaturesof 270 and 263.15 K.
The substrate temperature in both examples is assumed to be the
same as theair temperature.Two solid linesare shownin Fig. 2; these
show the ice height and ice plus water height when Ta D 263:15 K.
For small times, the lines coincidebecause initially there is no water
present, h D 0. The lines diverge only when water appears. In this

Fig. 2 Ice and water growth for Ta = 263:15 K (——) and Ta = 270 K
(- - - -); Ts = Ta in both cases.

Fig. 3 Bg vs Ta with Ts = Ta (——) and Ts = 263:15 K (- - - -).

case, water and, hence, glaze ice � rst occur after 45.86 s, when the
ice height is 2.58 mm. The broken lines show the same situation for
an ambient temperatureof Ta D 270 K. Because the air is now much
warmer, glaze appears much more rapidly, tg D 7:95 s, and the ice
has a thickness of Bg D 0:45 mm.

Figure 3 shows the variation of the time glaze � rst appears with
ambient temperature.The solid line is for thecase when the substrate
temperature is the same as the air temperature. This shows Bg D 0
when Ta D T f . Because Bg is the rime ice thickness at which glaze
� rst appears and the model requires an initial ice layer, then when
Ts D Ta D T f , there can be no ice accretion.DecreasingTa increases
the value of Bg until a singularity is reached at Ta D 254:76. This
is the lowest temperature at which glaze ice can occur under the
present conditions.

The broken curve in Fig. 3 shows the value of Bg with a substrate
temperature � xed below freezing, Ts D 263:15 K. The value of the
ambient temperature at which glaze never occurs is the same as
for the preceding case. However, when Ta D T f , the broken curve
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Fig. 4 Microstructure of a piece of ice grown on a model aluminum
airfoil (NACA 0012) at 263.15 K.

displaysa nonzero Bg , which indicates ice may grow even when the
air temperature is above freezing. This phenomenon could occur,
for example, if the aircraft fuel remains cold after � ying at a high
altitude and it has not had suf� cient time to heat up before the
craft encounters water. The large thermal mass of the fuel may be
suf� cient to keep the wing below the ambient temperature for some
time resulting in a surface temperature less than ambient.1

Qualitativeexperimentalvalidationfor the current model is given
in Fig. 4. This shows a thin section of a piece of ice grown in the
Aerospace Composite Technology Artington Icing Wind Tunnel
(Guildford, England, United Kingdom) as part of the ICECREMO
testprogram.The microstructureis highlightedby theuseof a strong
background light source, which may be partially seen to the right of
the ice section. The accretion was formed in approximately 12 min
on a NACA 0012 aluminum model, with dimensions 40 £ 4.8 cm.
The ice grewfromright to left, into theair� ow. Althoughsome of the
specimenhasbeenbrokenawayduringthe processof recoveringit, a
layerof � ne columnargrains,associatedwith rime icegrowth,canbe
seen near the originalgrowth front.As theaccretionhascontinuedto
grow, the grain structure has become coarser, associatedwith glaze
ice growth. The experimental conditions associated with Fig. 4 are
speci� ed in Table 1. A CFD calculationcarried out using FLUENT
version 5, under the same conditions as those in the wind tunnel
but in a freestream, that is, not con� ned in a tunnel, shows that the
typical value for the catch ef� ciency at the leading edge is 0.55,
giving a mass � ux ¯WG D 0:0495 kg ¢ m2 ¢ s. As mentioned in the
discussion of Fig. 2, Eq. (25) gives a value of Bg D 2:58 mm. The
height of the � ne grain region in Fig. 4 varies between 2 and 3 mm.

VII. Extension to Two and Three Dimensions
The one-dimensionalenergy balance is speci� ed by Eq. (23). To

extend the model to two and three dimensions requires the addition
of energy terms due to water � ow into and out of the controlvolume.
These terms will be denoted Qent and Qo . The convective energy
terms Qent and Qo act as an energy source and sink, respectively,in
the conductive energy balance:

½g L F
@ B

@t
D

·i .T f ¡ Ts/

B
C ·w

.Qc C Qe C Qd / ¡ .Qa C Qk /

·w C h.qc C qd C qe/

C .Qo ¡ Qent/ (27)

This must be coupled with a mass balance,

Pment C Pm inc D F . Pment C Pm inc/ C Pm e C Pmo (28)

where Pment and Pmo are the water enteringand leavingthe controlvol-
ume, respectively, Pm inc is the mass in� ux due to incoming droplets,
and Pm e is the evaporation. For the standard Messinger6 energy bal-
ance, the combinedmass and energy balancemethod is describedin

greater detail in Refs. 1–3 and references contained therein. In the
presentcase, the icingcalculationproceedsin exactly the same man-
ner.Becausethe initialrime icegrowth involvesno � ow, Eq. (25)still
determines the ice thickness at which water � rst appears. However,
in this case the catchvaries in space ¯ D ¯.x/ and water � rst appears
at the pointwhere Bg takes its minimumvalue.Finally,Eq. (27) may
be simpli� ed even further because the conduction term through the
water h.qc C qd C qe/ may be neglected for the following reason.

In the one-dimensionalcase, where there is no � ow, a typical wa-
ter layer thickness may be of the order of millimeters (as shown in
Fig. 2). In this case, h.qc C qd C qe/ is of a similar magnitude to ·w .
In a typicalaircraft icing situation,the waterwill � ow and is unlikely
to reach such heights;heightsof order 1

10 mm are more realistic.15 In
this case, h.qc C qd C qe/ ¿ ·w , and conduction through the water
may be neglected. This is equivalent to assuming in� nite conduc-
tion throughthe water, and so the water remains at an approximately
constant temperature.Because µ D T f at z D B, then µ ¼ T f every-
where. This is the temperature used to determine the energy terms
Qent and Qo . Further, as described in Sec. VIII, this is the tempera-
ture that is normally used in the Messinger6 model. The problem of
ice growth in the presence of a � owing liquid is then governed by
the mass balance (28) and the energy balance

½g L F
@ B

@t
D

·i .T f ¡ Ts/

B
C .Qc C Q e C Qd C Qo/

¡ .Qa C Qk C Qent/ (29)

VIII. Comparison with the Messinger6 Model
In the following subsections the model developed in this paper

is compared with the analytical result of Messinger.6 It is shown
that for thin � uid � lms the large time limit of the current model is
exactly the Messinger model. At intermediate times the Messinger
model underpredicts the freezing rate.

A. One-Dimensional Model
During glaze ice formation, the Messinger6 model requires the

water temperature to equal the freezing temperature T f . Applying
the linear approximation for e.T /, the convective, evaporative,and
droplet cooling energy terms are

Qc D NHaw.T f ¡ Ta/; Qe D Âe0.T f ¡ Ta/

Qd D ¯W Gcw.T f ¡ Ta/ (30)

The Messinger6 energy balance is then

½g L F
@ B

@t
D Qc C Qe C Qd ¡ .Qa C Qk / (31)

The currentmodel has an ice growth rate speci� ed by Eq. (22). With
the de� nition of energy terms given by Eq. (30), this may be written

½g L F
@ B

@t
D

·i .T f ¡ Ts/

B
C ·w

.Qc C Qe C Qd/ ¡ .Qa C Qk/

·w C h.qc C qd C qe/

(32)

A comparisonof Eq. (31) with Eq. (32) highlights the differences
between the two models.

First, the current model contains an extra term proportional to
1=B. This represents heat conduction through the ice. For small ice
thicknesses, such as at the onset of accretion or in regions of low
catch ef� ciency, this is likely to be the dominant term in the energy
balance and the Messinger6 model will be inappropriate.

Second, the term on the right-hand side of Eq. (31) has a
denominator of 1, whereas in Eq. (32) the denominator is 1 C
h.qc C qd C qe/=·w . The difference in terms represents conduction
throughthe water layer.Typically,.qc C qd C qe/=·w » 2 £ 103. For
very thin � lms (for example, when the water is allowed to � ow),
2 £ 103h ¿ 1, and conduction through the water layer will be so
rapid that the water � lm may be neglected. The appropriate terms
in Eqs. (31) and (32) are then approximately the same. In one di-
mension, the water � lm will typically be O.10¡3/, and the water
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provides an insulating layer. For example, if cooling effects dom-
inate, so that Qc C Qe C Qd > Qa C Qk , then the ice growth rate
speci� ed by Eq. (32) decreases from that predicted by Eq. (31) as
the water layer thickness increases. That is, the water layer insu-
lates the ice accretion from the cool ambient conditions. If heating
effects dominate, Qc C Qe C Qd < Qa C Qk , the ice growth rate
will increase from that predicted by Eq. (31) with increasing h.

The Messinger6 model assumes the water to be at a constant
temperature, which is set to the freezing temperature T f for glaze
ice calculations. The present analysis shows that this is the correct
choice because the water layer affects the energy balance through
the phase change boundary,where the temperature is T f .

Equation (31) may be used to determine the conditions under
which water will never appear. If no water appears, the ice mass
growth rate is ½r @ B=@t D ¯W G. The energy associated with this
phasechangemust balancethe remainingenergy terms.Substituting
this growth rate into Eq. (31) leads to an expression for the air
temperature below which glaze never occurs:

Ta D T f ¡ ¯W GL F C Qa C Qk

qc C qd C qe

(33)

The current model may also be used to determine the conditions
at which glaze never appears. Equation (25) gives the ice thickness
at which the rime/glaze transition occurs. If this thickness tends to
in� nity, then waternever appears.The ambient temperatureat which
this occurs is determined by setting the denominator of Eq. (25) to
zero. Rearranging this expression then gives Eq. (33). The current
model, therefore, agrees exactly with the Messinger6 model on the
conditions at which glaze will not occur.

B. Higher-Dimensional Model
As discussed in Sec. VII, when the water is allowed to � ow, the

term that re� ects the insulatingeffect of the water layer is negligible.
In this case, the energy balance is givenby Eq. (29). The Messinger6

model is given by Eq. (31), with the addition of Q0 ¡ Qent on the
right-handside. This must be coupled to the mass balance,Eq. (28).
Now the only difference between the energy balances is the term
representingconductionthrough the ice. The magnitudeof this term
depends on the ambient conditions and the ice thickness. This is
highlightedin the following section.Note that when � ow is allowed
the water temperature is approximately the same as the freezing
temperature T f . The ice temperature is still determined by Eq. (19).

C. Freezing Fractions
The freezing fraction, de� ned by Messinger6 as the mass of ice

divided by the mass of incoming � uid, has long been recognizedas
an important quantity in icing calculations:

F D ½r

¯WGt
B; t < tg

½r Bg C ½g.B ¡ Bg/

¯WGt
; t > tg (34)

Figure 5 shows three curves, representing the freezing fractions de-
termined by the Messinger model (labeled curve a), by the current
one-dimensionalmodel (labeled b) and by the current method with
h ´ 0, as discussed in Sec. VII (labeled c). The ambient conditions
are the same as those employed in Fig. 2 with Ta D 263:15 K. How-
ever, the calculation is carried on for a longer time than in Fig. 2
to show clearly that curve b eventually falls below curve a. The
Messinger model has a constant ice growth rate, given by Eq. (31);
therefore, the variation of B is linear in time. Consequently, the
freezing fraction is constant once water has appeared. Before this
time, the ice growth rate is a different constantspeci� ed by the mass
balance [Eq. (13)]. The current method has an ice growth rate de-
pendent on the ice thickness and so decreases in time. Unlike the
Messinger model, the switch in ice growth rates at t D tg is continu-
ous and decreasesmonotonically.Close to t D tg , it may be observed
that the Messinger model ice growth rate is less than half the true
value.Only after 3 min are curvesa and b reasonablyclose.Note that
the value predicted by the Messinger model is not the asymptote of

Fig. 5 Variation of freezing fraction with time for Ta = Ts = 263:15 K;
curve a, the Messinger model; curve b, current one-dimensional model;
and curve c, current model with h = 0.

Fig. 6 Variation of freezing fraction with time for Ta = Ts = 270 K;
curve a, the Messinger model; curve b, current one-dimensional model;
and curve c, current model with h = 0.

curve b, which decreasesbelow curve a after 280 s. Curve c denotes
the energy balance when h ´ 0. This is the approximate solution
when the � uid is allowed to � ow. Curve c predicts a greater ice
growth rate than curve a for all time. In fact, the Messinger model
is the asymptote for curve c; however, it approaches this curve very
slowly. After 360 s of ice accretion (in this case equivalent to 311 s
of glaze ice growth) the ice growth rates still differ by 30%.

Figure 6 shows the equivalent curves for an ambient tempera-
ture of 270 K. Now the Messinger6 model underestimates the ice
growth rate by 65 and 70% for the one-dimensionaland water � ow
problems, respectively, after 360-s accretion time (352 s of glaze
ice accretion).

Figures 5 and 6 demonstrate that the validity of the Messinger6

model decreasesas the temperatureincreases.The Messingermodel
is, therefore, most appropriate close to temperatures where water
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will not appear. For example, for the conditionsspeci� ed in Table 1,
water will never appear below Ta D 254:8 K. When Ta D 258 K, the
differencesbetween the Messinger model freezing fraction and that
obtained by the one-dimensional and � ow models is 3.6 and 17%
after 120 s of glaze ice accretion. Decreasing the temperature will
bring the curves close together even more rapidly.

IX. Summary
A mathematical model has been developed to determine ice and

water growth in the presenceof incoming supercooleddroplets.For
rime ice growth, a mass balance determines the ice thickness.Once
this is obtained, the approximate temperature pro� le may be calcu-
lated.For glaze ice growth, the leading-orderproblem, for relatively
thin layers, reduces to a single � rst-order differential equation for
the ice thickness,which requires solving numerically.Once this has
been achieved, quantities such as the water thickness and tempera-
ture pro� les can be readily calculated.

With a � xed temperature at the substrate, the results show that
rime ice will grow initially. This occurs because the substrate pro-
vides many nucleation points and so, because the initial water
droplets must adopt the subzero substrate temperature, freezing
takesplace.Subsequently,providedconditionsare suf� cientlymild,
a water layer will appear.

The main advantages of using the current approach are that it
provides the temperature pro� les in the ice and water and an ex-
act formula for the ice thickness at which glaze is � rst observed.
Although it has not been proven experimentally, the current model
appears to give more physicallysensibleresults than the Messinger6

model. For example, the Messinger model predicts an immediate
switch from the constant rime ice freezing fraction (F D 1) to a sec-
ond constant value (F < 1) when glaze appears. The current model
predicts a smooth transition,with F decreasingmonotonicallyfrom
1. Because ice may conduct heat, it seems perfectly reasonable that
the energy balance and, consequently, the freezing fraction should
depend on the ice thickness. When the water layer is thin, F tends
toward the Messinger model value at large times. The difference
between the two models is greatest when the ice layer is thin and
conduction through the ice dominates.

The method employed assumes that the substrate has a known
(� xed) temperature, and so conduction through the substrate is ne-
glected. Physically, the current model is best applied to a substrate
of high conductivity,such as metal, with a thermal mass that is large
compared to that of the ice accretion. Because the method requires
the numerical solution of a � rst-order differential equation, it is
slightly more complicated than the Messinger6 model but still sim-
ple enough to be employed in full icing codes. The current model
has already been adapted to three dimensions and coupled with a
water � ow model in the ICECREMO code.

The relative effect of the driving mechanisms behind the ice
growth can be easily identi� ed from this analysis. For pure rime
ice growth, the ice height is determined by a simple mass balance.
If ambient conditions are suf� ciently mild the rime layer will turn
to glaze. The time at which this transition takes place increasespro-
portionally to the temperature difference between freezing and the
substrate, T f ¡ Ts ; with decreasing energy source terms, Qa C Qk ,
or increasingenergy sink terms Qc C Qd C Qe; and with decreasing
catch or mass � ux.

The subsequent glaze ice growth rate increases with increasing
conduction through the ice, either due to decreasing substrate tem-
perature or decreasing ice thickness; increasing water layer thick-
ness if energysourcetermsdominateordecreasingwater layerthick-
ness if energysink terms dominate;and increasingenergysink terms
or decreasing energy source terms.

Perhaps one of the most important results of this analysis is the
explicit formula for the ice thickness at which glaze � rst appears.
Setting the denominator of this expression to zero will determine
the mildest conditions at which glaze will never appear. The exper-
imental evidence shown in Fig. 4 indicates that the formula gives
physically realistic values.

By tackling this physical situation using a Stefan model, the
present method can provide information on temperature distribu-
tions and freezing rates. The freezing rate, in particular, is a useful
descriptorof local ice-formingconditionsandhas a directbearingon

the grain size, which may be measured directly. The grain structure
in turn determines the ice strength. This type of model, therefore,
provides signi� cantly more information than does the energy bal-
ance method currently employed in icing codes.
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