Stability of Three-Dimensional Boundary-Layers

AE 549 Linear Stability Theory and Laminar-Turbulent Transition

Prof. Dr. Serkan ÖZGEN

Spring 2016-2017
Three-dimensional stability

- A fundamental difference between the stability of 3-D and 2-D boundary-layers is that a 3-D boundary-layers is subject to crossflow instability.
- To understand the effect of three-dimensionality of the mean flow on stability, it is necessary to have a family of boundary-layers, where the magnitude of the crossflow can be varied in a systematic manner.
- The two-parameter yawed-edge (swept leading edge) flows are suitable for this purpose resulting in Falkner-Skan-Cooke family of profiles.
Flow geometry for three-dimensional b.l. flow
3-D flow with pressure gradient

- The two parameters are:
 - Falkner-Skan or Hartree parameter β_H,
 - Flow angle θ, which is the ratio of the spanwise freestream velocity to the chordwise freestream velocity, $\tan \theta = W_{sl}^*/U_{cl}^*$.

- The inviscid velocity in the plane of the wedge and normal to the leading edge (in x_c-direction, i.e. chordwise velocity) is defined as:
 $$U_{ce}^* = C^* x_c^* m,$$

 where the wedge angle is $\beta\pi/2$ and $\beta = 2m/m + 1$, with m being the dimensionless pressure gradient defined as:
 $$m = \frac{x_c^*}{U_{ce}^*} \frac{dU_{ce}^*}{dx_c^*}$$

- The velocity parallel to the leading edge (in z_s direction, i.e. spanwise velocity) is
 $$W_{se}^* = \text{constant}. $$
3-D flow with pressure gradient

- Flow in the chordwise direction, \(x_c \) is defined by the Falkner-Skan equation, which is independent of the spanwise flow, and \(f' = U_c \):
 \[
 2f'''' + ff' + \beta_H(1 - f'2) = 0.
 \]
- Falkner-Skan length scale is defined as:
 \[
 L^* = \left[\frac{v^* x_c^*}{(m + 1)U_{ce}^*} \right]^{1/2}.
 \]
- Once \(f \) is solved, flow in the spanwise direction, \(z_s \) is defined from the following equation:
 \[
 g'' + fg' = 0,
 \]
 where \(g = W_s^*/W_{se}^* \).
- Boundary conditions:
 \[
 f'(0) = g(0) = 0, \quad \text{(no slip)}
 \]
 \[
 f'(y) \to 1, g(y) \to 1 \quad \text{as} \quad y \to \infty. \quad \text{(freestream)}
 \]
3-D flow with pressure gradient

- Dimensionless streamwise (x-direction) and crossflow (z-direction) velocity components:

\[U(y) = f'(y) \cos^2 \theta + g(y) \sin^2 \theta, \]
\[W(y) = [-f'(y) + g(y)] \cos \theta \sin \theta. \]

- Falkner-Skan parameter \(\beta \) fixes both \(f'(y) \) and \(g(y) \).

- It can be seen from the above equation that all crossflow profiles \(W(y) \) have the same shape for a given pressure gradient, i.e. \(\beta \) value.

- Magnitude of the crossflow velocity will change with flow direction \(\theta \).

- However, streamwise profiles \(U(y) \) will change shape as \(\theta \) varies.
Velocity profiles for $\beta_H = -0.05$ and $\theta = 45^\circ$
Velocity profiles for $\beta_H = 0$ and $\theta = 45^\circ$
Velocity profiles for $\beta_H = 0.1$ and $\theta = 45^\circ$
Composite profile for $\beta_H = -0.1$ and $\theta = 45^\circ$
Neutral stability curves for $\beta_H = -0.1$
Neutral stability curves for $\beta_H = 0.1$
Effect of flow angle on Re_{cr} for $\beta_H = -0.1, 0, 0.1$
Conclusions

• For $\beta < 0$, increasing flow angle renders the flow more stable.
• For $\beta > 0$, increasing flow angle renders the flow more unstable.
• Flow angle has no effect on stability when $\beta = 0$.
• When the flow angle is around 0°, the critical Reynolds number of the three-dimensional flow is very close to that of the two-dimensional flow.

 When $\theta = 0^\circ$, $U(y) = f'$ and $W(y) = 0$.
• When the flow angle is $\theta = 90^\circ$, the critical Reynolds number of the three-dimensional flow is very close to that of the Blasius flow ($\beta = 0^\circ$).

 When $\theta = 90^\circ$, $U(y) = g$, which is very close to the Blasius profile and $W(y) = 0$.