AE 462 DESIGN OF AIRCRAFT STRUCTURES COURSE OUTLINE

INSTRUCTOR: Assoc.Prof.Dr. Altan Kayran Room 203, Tel: 4274 COURSE ASSISTANT: No Assistant COURSE OBJECTIVE:

The objective of the course is to equip the senior year aerospace enginering students with the relevant infrastructure to carry out the design of aircraft sub-structures like wings, fuselages, landing gears etc. The course aims at achieving its objective by introducing the following general concepts used in the design process.

- Introduction of design philosophies like damage tolerance, safe- life, fail-safe
- Establishment of relations between the design requirements and airworthiness regulations
- Introduction of the aircraft data requirements and description of the critical airloads used in the design and analysis of aircraft structures
- Introduction of the aeroelastic stability design constraint
- Overview of the role and lay-out of main structural members used in aircraft structures
- Initial sizing calculations based on design constraints such as deflection, local buckling
- General design considerations used in the structural joints and fittings
- Fatigue failure consideration and its relation with design philosophies, fatigue loads in aircraft operations and fatigue life analysis methods

TEXTBOOK:

No special textbook will be used in the course. However, first four reference books are the ones which are mainly followed in this course.

- 1- 'Airframe Structural Design,' 2nd edition, by M.Niu, 1999, Hong Kong Conmilit Press Ltd., ISBN: 9627128090. (ordered by the library)
- 2- 'Aircraft Loading and Structural Layout,' by Denis Howe, 2004, AIAA Education series.

- 3- 'Analysis and Design of Flight Vehicle Structures,' by E.F. Bruhn, 1973, Tri-State Offset Company, Call number: TL 671.2 .B7
- 4- 'Aircraft Structures,' by D.J. Peery and J.J. Azar, 1982, Mc Graw Hill, ISBN: 0070491968, Call Number: TL671.6 P4
- 5- 'Aircraft Structures for Engineering Students,' by T.H.G. Megson, 1990, 2nd edition, John Wiley Sons, ISBN: 0470216530, Call Number: TL671.6 M36
- 6- Course notes on 'Aircraft Design Loads', AIAA Professional Development Short Course, April 2007, Hawaii.
- 7- Course notes on 'Aircraft Structures Design and Analysis,' University of Kansas, March 2003, Virginia.
- 8- 'Airframe Stress Analysis and Sizing,' by M.Niu, 1999, Hong Kong Conmilit Press Ltd.,ISBN: 9627128082.
- 9- 'Analysis of Aircraft Structures,' by B.K. Donaldson, 1993, McGraw-Hill, ISBN: 007017539X, Call Number: TL671.6.D56
- 10- 'Theory and Analysis of Flight Structures,' R.M. Rivello, 1969, McGraw-Hill, ISBN: 07052985X, Call Number: TL671.6 R53
- 11- 'Structural Loads Analysis for Commercial Transport Aircraft: Theory and Practice,'
 by Ted L. Lomax, 1995, AIAA Education Series, ISBN: 1563471140, Call Number: TL671.6.L597
- 8- 'Understanding Aircraft Structures,' by J. Cutler, 1999, Third Edition, Blackwell Science, ISBN: 0632050012, Call Number: TL671.6 .88
- 9- 'Aeroelasticity,' by Raymond L. Bisplinghoff, H. Ashley and Robert L. Halfman, 1996, Dover Publications, ISBN: 0486691896, Call Number: TL574.A37B5397
- 10- 'Spacecraft Structures and Mechanisms; From Concept to Launch,' by Thomas P. Sarafin, 1998, Luwer Academic Publishers, ISBN: 188184019, 0792319962, Call Number: TL790.S74
- 11- 'Mechanical Engineering Design,' J.E. Shigley, McGraw Hill Book Company, 2001, Call Number: TJ230.S5
- 12- 'Fundamental of Machine Component Design,' R.C. Juvinall, K.M. Marshek, John Wiley and Sons, 2006, Call Number: TJ230.J88

COURSE SYLLABUS: Total Hours Allocated: 56 class hours

The classes are organized for 3 class hours per week. The fourth hour will be used for general discussion, problem solving and project discussion. However, in the first half of the course, four hours of class will be held to cover as much topic as possible to aid the student in their project assignment.

Course Outline:

1- STRUCTURAL DESIGN OVERVIEW (2)

Subject	Hours
Fundamental structural concepts	1
Structural design criteria – Limit, ultimate loads	
Design strategies	
American and European civil and military regulations and design	1
requirements	

2- AIRCRAFT LOADS (10)

Subject	Hours
2.1. Aircraft data requirements; Structural design speeds, basic	2
load concepts and types of load analyses	
Design process of aircraft	
• Sources of of external loading	
 Types of loads and stiffness requirements 	
Structure design criteria	
Aircraft Data requirements	
- Aerodynamic data	
- Mass, CG, Geometric data	
- Structural design speeds	
- Load factor data	
 Basic load concepts and types of load analyses 	
ASSIGNMENT 1: HW1	
Flight Maneuvering loads, V-N Diagrams	2
• Definition of maneuver	
Maneuver V-N diagram	
 Control system and hinge moment loads 	
• Maneuvers and maneuver critical structure	
 Maneuver flight loads calculation procedure 	
Steady maneuver loads calculation	
• Pitch maneuvers-Checked, unchecked	
Roll maneuvers-steady, accelerated	
• Yaw Maneuvers-Abrupt rudder, Oscillatory rudder motion	
Gust loads; Discrete gusts	3
• Discrete gust – Evolution of criteria	

Tuned gust regulations	
• Tuned gust output	
• Gust envelope	
Gust loads; Continuous gusts	
Definition of PSD	
PSD gust load history	
 Gust PSD used in design – Von Karman PSD 	
Landing and ground handling loads	
• Requirements, role of conventional landing gear	
General introduction and A/C landing attitudes	
Shock strut efficiency	
• Drop test	
• Shock absorber performance and efficiency	
Airframe loads and dynamic effects	
Ground handling loads	
Ground handling analysis	2
Take-off run and taxi	2
Braked roll conditions	
Turning conditions	
Nose wheel yaw	
Pivoting	
Reversed braking	
Towing conditions	
Jacking and mooring conditions	
Abnormal landing	
APPLICATION 1	Extra hour
Example problem of calculating wing shears and moments for one unit	
load condition	
(Bruhn p.A5.9,A5.10,A5.11)	

3- STATIC AEROELASTIC CONSIDERATIONS (4)

	Subject	Hours
3.1.	Basic definition	
	• Load distribution and control effectiveness and reversal	1
3.2.	 Flexible lift coefficient of a 2D wing including inertial effects, Divergence speed Flexible lift 	1
3.3.	• Slender beam model – Divergence instability	1
3.4.	 Control surface reversal of a simple 2D wing Effects of wing sweep General aeroelastic equations 	1

4- ROLE AND LAY-OUT STRUCTURAL MEMBERS (5)

	Subject	Hours
4.1.	Basic aims of structural design	
	• Analysis requirements-structural design data	
	Example of unrestrained beam analysis	1
	ASSIGNMENT 2: HW2	
4.2.	 Lifting surfaces – wings and stabilizers 	
	Overall requirements	
	Main structural components	
	Discrete Booms	
	Built-up skin-stringer construction	1
	Integrally machied and moulded construction	
	Multicell construction	
4.3.	Chordwise location of spars	
	Rib location ad direction	1
	• Horizontal and vertical stabilizer	
4.4	• Hinged control surfaces, pivoted control surfaces, high lift	1
	systems	
4.5	• Fuselage	1
	General considerations, cross section, basic structural	
	layout	
	Frames and bulkheads	

MIDTERM EXAMINATION

5- INITIAL SIZING OF AIRCRAFT STRUCTURES EMPHASIS-2008: WING STRUCTURE, HAND CALCULATION (11)

	Subject	Hours
5.1.	• Wing strength requirements and stress analysis methods	0.25
5.2.	• Analysis and design of semi-monocoque structures	
	- Typical structural idealizations	
	- Review of unsymmetric bending and shear flows due to	
	transverse forces	6
	- Torsion of closed section box beams, angle of twist	
	- Shear center of closed section box beams, multicell box	
	beams, Beam coordinates- A/C coordinates,	
	ASSIGNMENT 3: HW3	
	- Example of 3 flange- single cell wing (Bruhn-p.A19.5-7)	
	- Multicell box beam under torsion- Easy solution method	
	ASSIGNMENT 4: HW4	
	APPLICATION 2	Extra hour
	Example of analysis of wing with single external strut brace	
	(Bruhn- p.A19.7-10)	

5.3.	Buckling design constraints	
	- Local buckling of skin panels	5
	- Strut/stringer buckling	
	- Compression buckling of thin walled section and	
	stiffened skin panels	
	- Buckling of flat plates under in-plane bending	
	- Buckling of flat plates under combined loading	
	- Effect of curvature on buckling	
	- Optimization of distributed flange-stringer designs	

6- STRUCTURAL JOINTS AND FITTINGS (4)

Subject	Hours
Introduction to joints and fittings	
General design considerations	
 Bolted or riveted joints – modes of failure 	4
Eccentric joint analysis	
• Lug analysis	
APPLICATION 3	Extra hour
Riveted joint analysis – loads carried by interior rivet lines	
ASSIGNMENT 5: HW5	

7- FATIGUE FAILURE CONSIDERATION, DAMAGE TOLERANT, FAIL SAFE AND SAFE LIFE DESIGNS (6)

Subject	Hours
• Fatigue failure, Definitions, S-N curves, low-high cycle fatigue	
• Fatigue strengths for different types of loading	
• Factors affecting fatigue strength	3
• Reliability analysis	
• Fatigue under fluctuating stress with a mean	
• Cumulative fatigue damage and fatigue life prediction-Miner's	1
rule	
• Fatigue design process:Safe life, fail safe, damage tolerant	
designs	
Fatigue Related specifications	
• Fatigue loads in aircraft operations, Typical mission profiles	2
- Manuever loads discrete analysis	
- Exceedances curves and data for maneuver load	
- Turbulence loads	
- Landing loads	
GAG cycle	
APPLICATION 4	
Two problems:	
Problem 1- Factor of safety analysis for a leaf spring under	Extra hour
fluctuating stress with a mean	
Problem 2- Determination of fatigue life of an structural part under	
variable amplitude loading	

COURSE EVALUATION

5 homeworks (3% each)	12.5 %
One midterm examination	20 %
Project (50%)	50 %

Progress report (12%)

Document 1 under the "submission documents" list of the Design Project handout. Deadline for the progress report will be announced during the semester.

Project final report (30% or 35%)

Documents 2,3, and 4 under the "submission documents" list of the Design Project Handout

5% extra for exact calculation of the divergence speed.

Some intermediate deadlines may be announced during the semester for the second part of the project. These deadlines will be announced during the semester. Some of these works may be combined with homeworks. These intermediate assignments will let you prepare for the final project report.

Project presentation (8 %)

Final Examination		20 %
Total		102.5 % (2.5 % bonus)
	or	107.5 %

NOTES :

- Total number of lectures is 42 hours per semester. However, in the first half of the course, four hours of class will be held to cover as much topic as possible to aid the student in their project assignment.
- In case the classes are finished early students will be held free to carry out their study on their assigned projects, and class will meet only for one hour to discuss about the project progress.
- Projects will be assigned to a group of two people
- Project will be assigned after the completion of the fourth section. This time approximately corresponds to half semester
- A project progress report will be written, and submitted. The progress report due time will be announced during the project discussions

- Final project submission should be in the beginning of the week right after the completion of the final examination.
- After the submission of the project, there will be project presentations for each design team during that week.

Each group will present their work. Project presentation is a must item. Students who do not present their project will receive incomplete grade.

- Final examination will cover all sections. Examination will be open book and notes.