AE 452 Aeronautical Engineering Design II Energy Maneuvrability Methods

Prof. Dr. Serkan Özgen Dept. Aerospace Engineering March 2017

Energy equations

- Potential energy of altitude can be exchanged for kinetic energy of speed or turn rate.
- The <u>sum of aircraft energy</u> (potential+kinetic) must be managed to attain success in a dogfight.

$$E = Wh + \frac{1}{2}\frac{W}{g}V_{\infty}^2$$

 $h_e = \frac{E}{W} = h + \frac{V_{\infty}^2}{2g}$, specific energy or energy height $P_s = \frac{dh_e}{dt} = \frac{dh}{dt} + \frac{V_{\infty}}{g} \frac{dV_{\infty}}{dt}$, specific excess power

Energy equations

$$P = (T - D)V_{\infty}, \text{ excess power}$$

$$P_{S} = \frac{(T - D)V_{\infty}}{W} = \frac{dh}{dt} + \frac{V_{\infty}}{g}\frac{dV_{\infty}}{dt}$$

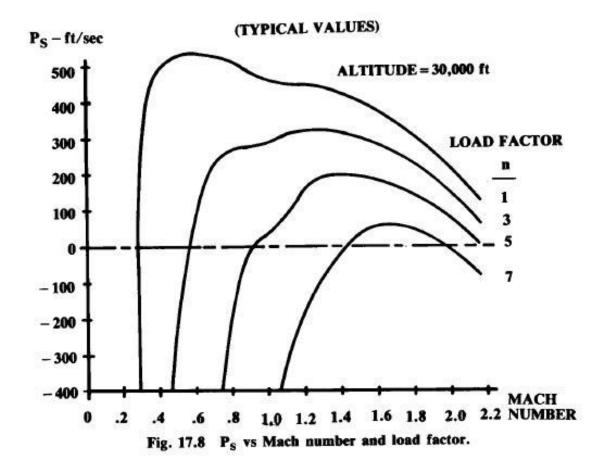
$$D = q_{\infty}SC_{D} = q_{\infty}S(C_{Do} + KC_{L}^{2})$$

$$L = nW = q_{\infty}SC_{L} = nW \Rightarrow C_{L} = \frac{n(W/S)}{q_{\infty}}$$

Substituting yields:

$$P_{S} = V_{\infty} \left[\frac{T}{W} - \frac{q_{\infty}C_{Do}}{W/S} - n^{2} \frac{K}{q_{\infty}} \frac{W}{S} \right]$$

- *P_s* can be calculated for different Mach numbers and load factors at a given altitude provided that aerodynamic coefficients and installed thrust data are available.
- From *P_s* charts at various altitudes, several other charts can be plotted by cross-plotting.



- $\dot{\Psi}$ (turn rate) vs. P_s at a given altitude.
- $\dot{\Psi}_{design} \dot{\Psi}_{threat} > 2^o/s$ is significant.

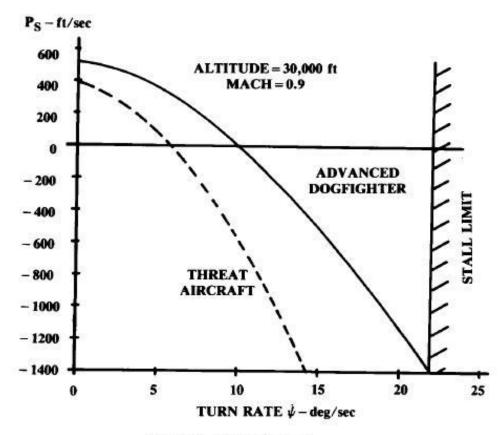
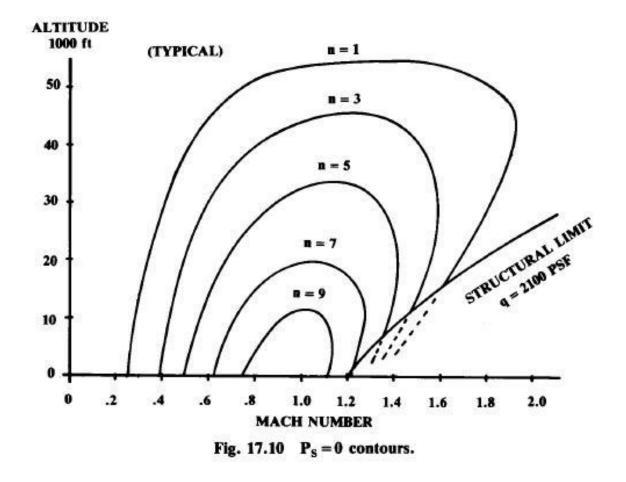


Fig. 17.9 Turn rate vs Ps.

- $P_s = 0$ contours as a function of Mach # vs. altitude, allows comparison between two fighters.
- To win a dogfight, a new design should have $P_s = 0$ contours that envelop those of threat airplanes.



- $P_s = constant$ contours at a given load factor as a function of Mach # vs. altitude.
- A separate chart is prepared for each load factor *n*.
- A chart for n = 1 is especially important because it yields the rate of climb and the aircraft ceiling, as well as determining the optimal climb trajectory.

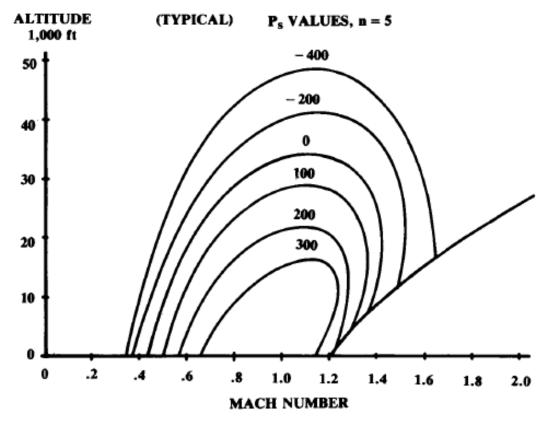


Fig. 17.11 Ps contours, constant load factor.

Contours of energy height, Mach # vs. altitude



Fig. 17.12 Lines of constant energy height.

• Time to change energy height:

$$\frac{dh_e}{dt} = P_s \Rightarrow dt = \frac{dh_e}{P_s} \Rightarrow t_{1\to 2} = \int_{h_{e1}}^{h_{e2}} \frac{dh_e}{P_s}$$

 \Rightarrow time to change energy height is minimized if P_s is maximized at each energy height.

Method to calculate minimum time to climb trajectory:

- 1. Superpose $P_s = constant$ curves in Mach # vs. altitude format at n = 1 and contours of energy height in Mach # vs. altitude format.
- 2. The locus of points where a P_s curve is exactly **tangent** to an **energy height curve** is the trajectory for minimum time to climb.

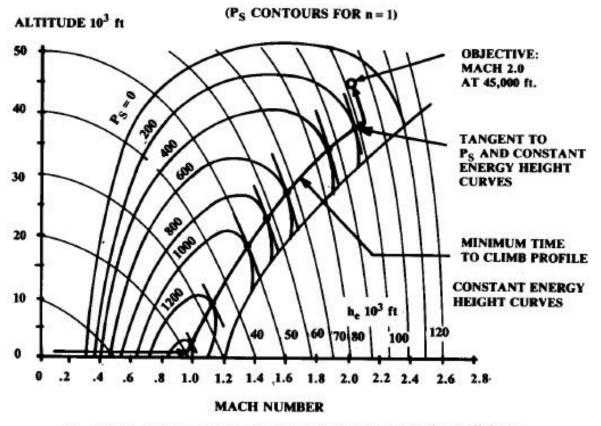


Fig. 17.13 Minimum time-to-climb trajectory, high-thrust fighter.

 For a current technology fighter, where excess power is great, minimum time to climb is obtained by accelarating to transonic speeds at constant altitude and pitching up into a steep climb at approximately constant dynamic pressure.

- For older generation jets where excess power is less and is almost zero at transonic speeds, *P_s* contours form bubbles.
- The minimum time to climb trajectory requires jumping from one bubble to another having the same numerical P_s value.
- This requires a dive through M = 1.

$$t_{1 \rightarrow 2} = \frac{\Delta h_e}{P_{s,average}}$$

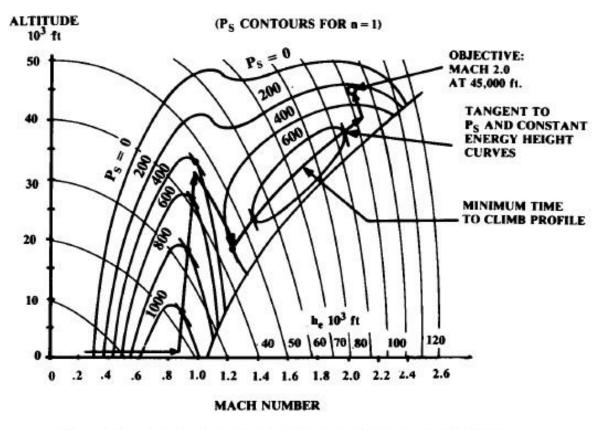


Fig. 17.14 Minimum time-to-climb, low thrust fighter (circa 1960).

- Fuel specific energy
- = change in specific energy/change in fuel weight

$$f_{s} = \frac{dh_{e}}{dW_{f}} = \frac{dh_{e}/dt}{dW_{f}/dt} = \frac{P_{s}}{CT} \operatorname{using} C = \frac{W_{f}/t}{T}$$
$$W_{f1 \to 2} = \int_{h_{e1}}^{h_{e2}} \frac{dh_{e}}{f_{s}}$$

Method to calculate minimum fuel to climb trajectory:

- 1. Calculate and plot f_s values as a function of Mach # at each altitude.
- 2. Minimum fuel to climb trajectory passes through those points for which f_s contours are tangent to h_e contours, i.e. when f_s is minimized for each energy height.

$$W_{f1\to 2} = \frac{\Delta h_e}{f_{s,average}}$$

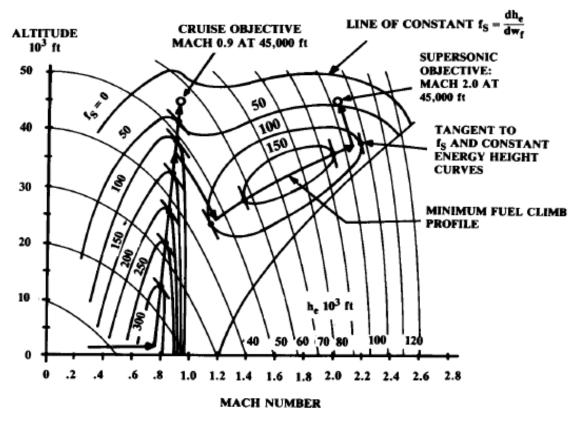


Fig. 17.15 Minimum fuel to climb.

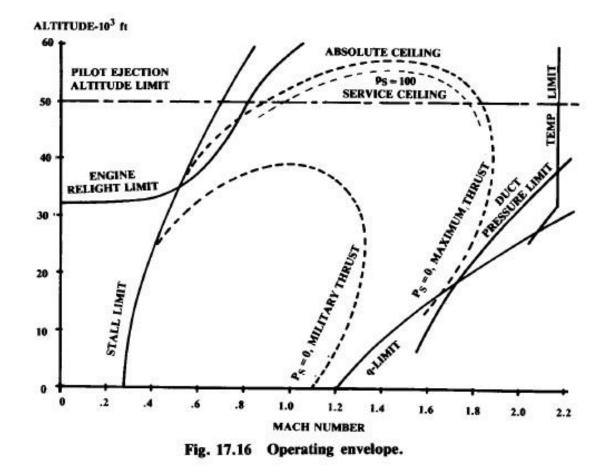
Energy method for mission segment weight fractions

• For mission segments involving **an increase in energy height** (climb, accelaration or both):

$$\frac{W_i}{W_{i-1}} = exp\left[-\frac{C\Delta h_e}{V_{\infty}(1-D/T)}\right] = exp\left[-\frac{C\Delta h_e}{V_{\infty}\left(1-\frac{1}{(T/W)(L/D)}\right)}\right]$$

 This formulation cannot be used for mission segments involving decreases in energy height (descents, decelarations, etc.).

- Operating envelope (flight envelope): maps the **combinations of altitude and velocity** that the aircraft has been designed to withstand.
- Level flight operating envelope is determined from the $P_s = 0$ and stall limit curves. $P_s = 0$ limit may be shown as maximum thrust and military thrust curves.
- Since P_s varies with aircraft weight, a constant weight must be assumed, i.e. takeoff weight, cruise weight or combat weight.



- Absolute ceiling: highest altitude where $P_s = 0$.
- Service ceiling: some rate of climb is required (and corresponding *P_s*.
 - FAR: 100 ft/min for propeller, 500 ft/min for jets.
 - Military: 100 ft/min.
- **Combat ceiling:** R/C=500 ft/min
- For jet fighters service ceiling is ≈ 50 000 ft since ejection above that altitude will not usually result in survival of the pilot.

- Maximum q limit is defined in the design requirements and used by the structural designers for stress analysis.
- Typically, fighter aircraft are designed for $q = 1800 2100 \, lb/ft^2$.
- This corresponds to **transonic speeds at sea level**.