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1 Introduction




In 1807, the French mathematician Joseph Fourier (1768-1830) submitted
a paper to the Academy of Sciences in Paris. In it he presented a mathe-
matical description of problems involving heat conduction. Although the
paper was at first rejected, it contained ideas that would develop into an
important area of mathematics named in honor, Fourier analysis. One sur-
prising ramification of Fourier’s work was that many familiar functions can
be expanded in infinite series and integrals involving trigonometric functions.
The idea today is important in modeling many phenomena in physics and
engineering.

2 Fourier Series

Definition 1 (Periodic functions)

A function f(t) ist said to have a period T or to be periodic with period T
if for allt, f(t+ T) = f(t), where T is a positive constant. The least value
of T > 0 is called the principal period or the fundamental period or simply
the period of f(t).

Example 1

The function sin x has periods 2w, 4, 67, . .., since sin(xz+27), sin(z+4~), sin(z+
67),... all equal sinz.

Example 2

Let a € R. If f(x) has the period 2r then F(t) := f(wt) := f(%5t) has the

period T. (substitute 2t .=z, w:= 2

Example 3
If f has the period T then

a+T T
/ f(t)dt = / f(t)dt VYa€R
a 0

Definition 2 (Periodic expansion)
Let a function f be declared on the interval [0,T). The periodic expansion

f of f is defined by the formula

NP0 0<t<T
f(t)_{f(t—T) Vt e R



Definition 3 (Piecewise continuous functions)
A function f defined on I = [a,b] is said to be piecewise continuous on I if
and only if

(i) there is a subdivision a = o < 1 < s < ... < T, = b such that f is
continuous on each subinterval Iy = {x : xx_1 < © < x}} and

(ii) at each of the subdivision points xg, 1, ... , &, both one-sided limits of
f exist.

Theorem 1

Let f be continuous on I = [—m,]. Suppose that the series
% + Z;(an cos nzx + by, sinnx) (1)
n=

converges uniformly to f for all x € I. Then
1 K
an:—/ f(t)cosntdt n=0,1,2,...
T -7
1 [7 .
bn:—/ f(t)sinntdt n=1,2,...
™ —T

Proof. The partial sums s; are defined as

k
sp(z) = % + Z(am cos mx + by, sin mz)

m=1

Since the sequence sy (x) converges uniformly to f(x), it follows that s () cos nz
converges uniformly to f(z)cosnz as k — oo for each fixed n.
(Observe that |s;(z) cosnz — f(z) cosnz| < |sg(z) — f(x)])
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Therefore, for each fixed n

o0
a :
f(z)cosnz = EO cosnx + E (@ cos mx cos na + by, sin mz cos nw)

m=1

The uniformly convergent series may be integrated term-by-term
™
/ f(z) cos nxdx = may, n=20,1,2,...

The argument goes analog for f(z)sinnz. O

Definition 4 (Fourier coefficients, Fourier series)

The numbers a,, and b, are called the Fourier coefficients of f. When a,, and
b, are given by (2), the trigonometric series (1) is called the Fourier series of
the function f.

Remark 1

If f is any integrable function then the coefficients a, and b, may be com-
puted. However, there is no assurance that the Fourier series will converge
to f if f is an arbitrary integrable function. In general, we write

o0
f(z) ~ % + Z(an cos nzx + by, sinnz)
n=1

to indicate that the series on the right may or may not converge to f at some
points.

Remark 2 (Complex Notation for Fourier series)
Using Euler’s identities,

0

e” =cosf +isinf

where 1 is the imaginary unit such that i*> = —1, the Fourier series of f(z)
can be written in complex form as

fl@)= ) cpe™ (3)

n=—oo



where

1 4 )
=5 /_ f@eda ()
and
1 1 ) 1 .
Co = 500, Cn = i(an—zbn), Cop = §(an+zbn), n=12 ...
ap = 2¢y, An=Cn+cC_pn, by =1i(ch —c_pn), n=12 ...
Example 4

Let f(z) be defined in the interval [0,T] and determined outside of this
interval by its periodic extension, i.e. assume that f(z) has the period T.
The Fourier series corresponding to f(x) (with w := %) is

Qg > .
f(z) ~ 5 T Z (@, cos nwz + by, sin nwz) (5)

n=1

where the Fourier coefficients a, and b,, are

9 (T
ap = T/ f(z) cos nwzdx n=20,1,2,... (6)
0

) T
b, = —/ f(z) sin nwzdz n=12... (7)
T Jo

Example 5
Let a,, and b, be the Fourier coefficients of f. The phase angle form of the
Fourier series of f is

o
fe~ % + Z Cn cos(nwz + 0y)

n=1
with
Cn =/a2 + b2 n=1,2,
and
_1, ba
0p = tan™ (——), n=1,2,
an



Example 6
We compute the Fourier series of the function f given by

f(:c):{l 0z <

-1 o<z <2r
Since f is an odd function, so is f(z)cosnz, and therefore

an, =0, n=1273,...

a0=0

For n > 1 the coefficient b, is given by
1 . m 2 nodd
b, = — sin nxdr — sinnx | = "7
™ \Jo w 0, neven

f 4(sinx n sin 3z n sin bz
T 1 3 5

It follows

2.1 Dirichlet conditions

It is important to establish simple criteria which determine when a Fourier
series converges. In this section we will develop conditions on f(z) that
enable us to determine the sum of the Fourier series. One quite useful method
to analyse the convergence properties is to express the partial sums of a
Fourier series as integrals. Riemann and Fejer have since provided other ways
of summing Fourier series. In this section we limit the study of convergence

to functions that are piecewise smooth on a given interval.



Definition 5 (Piecewise smooth function)
A function f is piecewise smooth on an interval if both f and f' are piecewise
continuous on the interval.

Theorem 2
Suppose that f is piecewise smooth and periodic.
Then the series (1) with coeflicients (2) converges to

1. f(z) if z is a point of continuity.
2. L(f(z+0)+ f(z —0)) if z is a point of discontinuity.

This means that, at each  between — L and L, the Fourier series converges
to the average of the left and the right limits of f(z) at x. If f is continuous
at x, then the left and the right limits are both equal to f(z), and the Fourier
series converges to f(x) itself. If f has a jump discontinuity at x then the
Fourier series converges to the point midway in the gap at this point.

Remark 3
Let f be a given piecewise continuous function. We say that f is standardised
if its values at points x; of discontinuity are given by

1

SUf(@it) + f(zi—)]

flai) =5

Remark 4

The conditions imposed on f(x) are sufficient but not necessary, i.e if the
conditions are satisfied the convergence is guaranteed. However, if they are
not satisfied the series may or may not converge.

Theorem 3 (Bessel’s inequality)
Suppose that f is integrable on the interval [0, T|. Let ay, b,, ¢, be the Fourier
coefficients of f. Then

@l | = 2 [T
RIS SO ELD DEEE=Y VO IO
n=1 k=—o00
Proof. Sy denotes the partial sums Sy = 9 + Zle(an CoOS NWz +

by, sin nwz) Now

/ F(8) — Sw(t)]2dt = / Pyt 2 / F(6)Sn(2)dt + / S (t)dt
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From the definition of the Fourier coefficients, it follows that

N

1

5a§+Z( +02) = /f (t)Sn(t
k=1

Also, by multiplying out the terms of S%(¢) and taking into account the
orthogonality relations of the trigonometric functions, it follows that

2 T ) 2 T
= / S}t = / F(H)Sw()dt
Therefore

0<—/[f /f2 dt—{—a0+Z(ak+b2}

Since f2 is integrable we may let N tend to infinity

%ao—i—Zak-l-bz / fA(t)dt < 0o

0

Theorem 4 (Riemann lemma)
Let f be integrable and a,, and b, be the Fourier coefficients of f. Then

lim a, = lim b, =0
n—,oo n—,oo

which means

lim f(t) cosntdt = lim / f(t)sinntdt =0
n—oo J__ n—oo [__-

Proof. From the Bessel inequality it follows that

2 o0
a
% +) (lanl® + [ba*) < 00
n=1

and therefore

lim a, = lim b, =0
n—oo n—,oo



Theorem 5 (Parseval’s identity)

T 2 o
7| P =G DICELA ©)

if a,, and b,, are the Fourier coefficients corresponding to f(z) and if f(x)
satisfies the Dirichlet conditions.

2.2 The Gibbs Phenomenon

Near a point, where f has a jump discontinuity, the partial sums S, of a
Fourier series exhibit a substantial overshoot near these endpoints, and an
increase in n will not diminish the amplitude of the overshoot, although with
increasing n the the overshoot occurs over smaller and smaller intervals. This
phenomenon is called Gibbs phenomenon. In this section we examine some
detail in the behaviour of the partial sums S, of S(z) = > j , 2k,

Theorem 6

(o] .
sinkr w—=x
E = , O<zx<2m
T 2
k=1

Proof. For 0 < z < 2w and for each n € N

Sln(2n+1.’17)
_+Zcos (kx) 2s1n(2) , O<ax<2rm
Therefore
s1nkx
Sy = / Zcos (kt)d
k=1 T k=1 i1
* (-1 sin(==t
— _+M dt
- \ 2 25sin(t/2)
- 1 ~cos(* 1 [® cos(t/2 2n +1
_rT-r, Gy )z f” ——/ C.Osz(/)cos(n—i_ t)dt
2 2n+1 sin § 2 J, sin®(t/2) 2




Since

/””M‘dtzid

sin®(t/2) sin(z/2)
we have
in k - 1 2
Zsmx_ﬂ :ES < $—1>—>0 if n = o0
— k 2 2n+1 \sin 3

The next step is to replace the partial sums S, with integrals

. —x 2 sin(22t1t) T
= cosktdt=—+/ B [ e ga— n — 0o
/0 ; (k) 2 o 2sin(t/2) 2 ( )

For z ~ 0 we have a typically "overshoot”. This will be the next step to

show. Let z,, = 2211.

1 Tn gin(2ntly u i L
Sp(zn) + =z = / Mdt = / inalll dr — / ST o
2 o 2sin(¢/2) o sin(z57)(2n+1) o T

Theorem 7 (The Gibbs phenomenon)

Let n € N and z,, = 22:1.

and

/ sinT .1.1789797 ..

Since S(z) ~ m/2 for = near 0, we see that an ”overshoot” by approximately
17.9% is maintained as n — oo (but over smaller and smaller intervals centred
at z = 0).

10
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o ([

2.3 Problems

Exercise 1
Find the Fourier coefficients corresponding to the function

f(z) = period = 10

0 —-5<z<0
3 O<x<bh

Possible solutions are:

1.
3 n=0
a, =
0 n=1,2,...
b — n% n odd
"0 n even
2.
a, =0
bn:{% n odd
0 n even

11



Yes, that’s right.

2 3
an:—/ f(t) cos nwtdt = —/ 3cosn—tdt —sinnr =0 n#0
T Jo ™
) 5
= — 3dt =3
=90/,
2 [° 2m 3 £ nodd
b, = 3 “Ttdt = 1-— =
M sinn 10 7rn( cosnm) {0 - even

f 3+6 T +1 3T n
~ — 4+ —(sin—x + —sin —=z
2w 5 3 5

Sorry. Please try again.
Sorry. Please try again.

Exercise 2
How should
0 —-5<z<0
z) = eriod = 10
/(@) {3 0<z<b P
be defined at * = —5,x = 0 and x = 5 in order that the Fourier series will

converge to f(z) for =5 < x <57

Possible solutions are:

12



0 r=-5
0 <<
fle)=4¢3/2 =
3 O<z<b
\3 r=2>5
2.
)
3/2 z=-5
0 <<
flx)=43/2 =0
3 O<z<b
(3/2 ==
3.
(3 z=-5
0 —-H<r<0
flx)=4¢3/2 =0
3 O<z<b
\0 r =

Sorry. Please try again.
Yes, that’s right.

Sorry. Please try again.

13



Exercise 3
Expand f(z) = |z|, —m < & < 7 in a Fourier series if the period is 2w

Possible solutions are:

1.
m 4 sinx sindx sinbz
T z te o)
2.
f T 4(cos2x+cos4x+c086x )
2 g 22 42 62 .
3.
f T 4(cosx+cos3a:+cos5x+ )
2 7 12 32 52

Sorry. Please try again.
Sorry. Please try again.
Yes, that’s right.

b, =0 (f is even)

L 7r n=

ap = —2/ z cos(nx)dz = ¢ 0 n even
T Jo 14

P 3 n odd

Exercise 4 (Orthogonality conditions)
Let n,m € N. Evaluate the following integrals:

I
/ ezmt efmt dt
-

/ " cos(mt) cos(nt)dt, /_ " sin(mt) sin(nt)dt

/ sin(mt) cos(nt)dt

14



Possible solutions are

1.
/7r eimtefintdt: {0 m#n
o 2r m=mn
K . . ™ O
/ sin(mt) sin(nt)dt = / cos(mt) cos(nt)dt = {
-7 —T ™
/ sin(mt) cos(nt)dt =0
2.
/ eimtefintdt =0
/ sin(mt) sin(nt)dt = / cos(mt) cos(nt)dt =
i 0
/ sin(mt) cos(nt)dt = { m#n
- T m=mn
3.

/W eimtefintdt: 0 m#n
o 1 m=n

/7r sin(mt) sin(nt)dt = /7r cos(mt) cos(nt)dt = {

- ()

0
2T

/7r sin(mt) cos(nt)dt =0

—T

15
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Yes, that’s right.

/ pimtp—int u _ / cos(m — n)tdt + z/ sin(m — n)tdt

_ —Lsin((m — n)t)|:r — —*—cos((m — n)t)‘:r =0 m#n
e m=n

Since
2 0mn = / efmteintds —
= / (cos(mt) cos(nt) + sin(mt) sin(nt))dt + z/ (cos(mt) sin(nt) — cos(mt) sin(nt))dt

and
0= /‘7T eimte—}—intdt —

_ / " (cos(mt) cos(nt) — sin(mt) sin(nt))dt + i / " (cos(mt) sin(nt) + cos(m¢) sin(nt))dt

-

T

270, = 2 /7r (cos(mt) cos(nt))dt + 22'/ (cos(nt) sin(mt))dt

—T —T

Therefore
0= /7T (cos(nt) sin(mt))dt
and
TOmn = /7T (cos(mt) cos(nt))dt
Integration by parts
TOmn = /7T (sin(mt) sin(nt))dt

Sorry. Please try again.
Sorry. Please try again.

16



Exercise 5
Find the Fourier representation (period 2m) of

f(z) = sin(3z) + cos?(z)

Possible solutions are:

1.
f ~ sin(3z) + cos®(z)
2.
1 1, 1,
f~ gt sin(3z) + cos(z) + 5 Cos (z) + 3 08 () +...
3.

1 1
f~ 5t sin(3z) + 3 cos(2z)

Sorry. Please try again.
Sorry. Please try again.
Yes, that’s right.

1
~cos(2z) + = = —(cos*(x) — sin®(z)) + 3
1
= —(2cos’(x) — 1) + 3= cos?(z)
Exercise 6
Let f be piecewise continuous. Evaluate
. i ) 1
lim f(z)sin(m + -)zdz
m—oo [ 2
Possible solutions are:
1.
i 1 ™
li i —)adr = —
mgr;o/_ﬂf(a:) sin(m + 2)3: z=3

17



™

. . 1
Jim B f(z)sin(m + i)xda: =2

™

lim f(z)sin(m + %)xdw =0

m—oo J

Sorry. Please try again.
Sorry. Please try again.
Yes, that’s right.

Since

sin((m + 1/2)z) = sin(mz) cos(z/2) + cos(mz) sin(z/2)

It follows from the Riemann lemma

™

lim / " F(a) sin(m + )adz = Tim ( / " (F() cos(z/2) sin(ma)dz + / (() sin(z/2)) cos(ma)c

m—00 m—00

=0

Exercise 7
From the Fourier series

X sinkr Tw—x

g = , O<z<2m
T 2

k=1

the following equation can be obtained.

L cosnz (z—m)? w2
S(m):Z = 1 BED) 0<z<2rm

n=1
It is true that
1. S(z) has a overshoot near z = 27 by approximately 17.9%.

2. S(z) has a overshoot near z = 0 by approximately 17.9%.

18



3. S(z) has no overshoot.

Sorry. Please try again.

Sorry. Please try again.

Yes, that’s right.

Since S(x) converges uniformly on R, and 2% is continuous, it follows that
S(z) is continuous. Because there is no jump of discontinuity, S(z) has no
overshoot.

3 Fourier transforms

A Fourier series can sometimes be used to represent a function over an in-
terval. If a function is defined over the entire real line, it may still have a
Fourier series representation if it is periodic. If it is not periodic, then it
cannot be represented by a Fourier series for all . In such case we may still
be able to represent the function in terms of sines and cosines, except that
now the Fourier series becomes a Fourier integral.

The motivation comes from formally considering Fourier series for func-
tions of period 27T and letting 7" tend to infinity.

Suppose
o0
f(:l?): Z CnemTz
n=—00
and
1 T
=07 | ¢ f(t)
Now, set
nm T
n — o7 d Aw = n — Wn-1 = &
w T an w=uw Wn-1 T

and insert the integral formula for the Fourier coefficients:

i = eiwn:l: /T —iwntf(t)dt A
o 7 € w

n=—oo

19



The summation resembles a Riemann sum for a definite integral, and in the

limit 7' — oo (Aw — 0) we might get
1 * Wz /T —zwtf(t)dt d cR
— e e w x
2m —00 =T
This informal reasoning suggest the following definition:

Definition 6 (Fourier Transforms)
A function F(w) is called the Fourier transform of f(z), if

F) =510} = [ Ry
exist.

FUP@Y =5 [ " e P (w)dw

:% .

is called the inverse Fourier transform of F'(w).

(10)

(11)

The Fourier transform of f is therefore a function F{ f(¢)} of the new variable

w. This function, evaluated at w, is F'(w).

Remark 5

The constants 1 and 1/2m preceding the integral signs in (10) and (11)could

be replaced by any two constants whose product is 1/2m.

Example 7
The Fourier transform of f given by

£t) o= {1 It < 1

0 |t|>1

is

-1 2 w=20

O e e

20



The inverse Fourier transform computes to

1 [ . sinw 2 [ sin w
- e"” dw = — COS WX dw
0

T ) o w m w
:l/wsinw(w—kl)dw_l/wsinw(w—l)dw
7 Jo w 7 Jo w
1 lz| <1
=¢1/2 Jz|=1
0 |z| > 1

Theorem 8 (The Fourier integral)
1. If f(x) and f'(x) are piecewise continuous in every finite interval

2. and [°_|f(z)|dz converges, i.e f(z) is absolutely integrable in (—co, 00)
Then

e+ i@l = o gm [ e ([T o) a2

Remark 6
The above conditions are sufficient but not necessary. The similarity with
corresponding results for Fourier series is apparent.

We will now develop some properties of the Fourier transform:

Linearity
If a, 8 € €, then

Flaf(t) +B9(t)} = aF{f()} + 6F{g(t)} = aF (w) + fG(w)
provided the Fourier transform of f(¢) and g(t) exist.

Scaling
If F{f(t)} = F(w) and c € R, then

Flct} = iF(%), c#40

]

21



Time shifting
If 7{f(t)} = F(w) and t; € R, then

F{ft—t)}) =e ™ F(w), toeR

Proof.
F{ft—ty} = /oo ft —to)e “idt
= ¢ Wh /°° f(w)e “W™dy

Frequency shifting
If F{f(t)} = F(w) and wy € R, then

Fle“tf(t)} = F(w —wy), wo€R

Proof.

Fle (o} = [ et e it = Pl - wo)

Symmetry
If F{f(t)} = F(w), then

FF®)} = 2nf(-w)

Proof. Use the formula for the inverse Fourier transform
1 [ ) 1 [ .
— —1 F — F iwt — F izt
£(t) = FYF(w} _27r/_oo (w)e™!du —%/_w (z)eidz
Then

o f(—w) = /_ " F(2)e ®dg = / T F(t)e dt = F{F(t)}

22



Modulation
If F{f(t)} = F(w) and wy € R, then

1
F{A(E) cos(wot)} = 5[F(w +wo) + Flw = wo))
) 1
FLf (@) sin(wt)} = S[F(w + wo) — Fw — wo)]
Proof. Use the frequency-shifting theorem to get

F{f(t) cos(wot)} = %[}' {0 f(t)} + Fle ™ f(t)}]
= %[F(w + wp) + F(w — wp)]

g

Differentiation in time
Let n € N and suppose that f(® is piecewise continuous. Assume that
limy o f®) () = lim;, o f*)(¢) = 0. Then

FL™(0)} = (w)"F(w)

In particular

F{f'()} = iwF(w)

and
FL()} = —wF(w)
Proof. Assume n = 1. The general case can be proved by
induction.

/_oo Fl(t)e “tdt = f(t)e—iwtﬁooo _ /_00 f()(—iw)e “idt = iwF(w)

g

Example 8
Suppose we want

F{f(t)}=F{e "}

23



We apply differentiation in time to get
F{tf(t)} = iF'(w)
We can also integrate by parts to get
F{tf ()} = -5 F(w)
Then we have
Flw)=-2Fw)  F(0)=/(m

Solving this equation, we get

w2

Fle "} = Vme

Example 9
Suppose we want to solve

Y — 4y =H(t)e ™

H(t) is given by

t
H(t) = 0 t<O0
1 t>0
Apply the Fourier transform to the differential equation to get
1
T -4 = F{H(t)e "} =
FUWt—AF{yp = FUHG)e ™} = -
Setting F{y(t)} = Y (w), we have
1
iwY (w) —4Y (w) = it
Then
1 -1 1
Y = = = _— _4|t|
A v wru o wras Sl T L,

From the last equation, we get

) = F 1Y (w) = —ge 1

24



Frequency differentiation
Let n € N and suppose that f is piecewise continuous. Then

F{ ()} = i"F™(w)
In particular
F{tf(t)} =iF'(w)
and

FEf(t)} = —F"(w)

Proof. We will prove the theorem for n = 1. The argument for
larger n is repetition of this.

F'(w) = / " (0)e “dt = —i / (£ (0)e e = —iF (e (1)}

d

Convolution

Definition 7 (The convolution (faltung))
If f and g both have Fourier transforms, then the convolution (faltung)
f * g of the functions f and g is defined by

f*xg= /_00 f(u)g(z — u)du (13)

Theorem 9 (The convolution theorem)
The Fourier transform of the convolution of f(z) and g(x) is equal to
the product of the Fourier transforms of f(z) and g(z).

F{f=*g}=F{f}F{g} (time convolution)

and

F{ft)g(t)} = %[F * G|(w) (frequency convolution)

25



Proof.  If [%_|f|dt, [* |g|dt < oo it follows for the time convolution
formula

FinFs= [ " G w)f(1)dt

" g ([ eratryar) sy

fzw t—|—7' )f(t)det

[

I.1,

/ / e “ug(r) f(u — 7)drdt
/ g Wy </oo g(1)f(u— T)dT) du

A proof of the frequency convolution goes analog. O

The Fourier transform of the Dirac delta function
Some problems involve the concept of an impulse, which may be intu-
itively thought of as a force of very large magnitude impacting just for
an instant. We can model this idea mathematically as follows:

0 -0 <t<0 -
6c(t)=q1/e 0<t<e and / 0e(t) =
0 e<t<oo e

As € is chosen smaller, the duration of this pulse tends to zero while its
amplitudes increases without bound. This lead us to define

6(t) :=lim &.(2)

Strictly speaking, d(t) is not really a function in the conventional sense,
but it is a quantity called distribution. For historical reasons it is called
the Dirac delta function after the physicist P. A. M. Dirac. The delta
function has the fundamental property:

Definition 8 (Dirac delta function)

/ 9(t)o(t — to)dt —hm/ 8e(t — to)dt =

= g(to), if f is continous in tg

26



Remark 7
Therefore the Fourier transform of the delta function yields 1.

F{6(t)} =1

The sampling theorem
A function f(¢) is called band-limited if its Fourier transform is only
nonzero on an interval of finite length. This means for some L, F(w) =
0if jw| > L.

Begin with the integral for the inverse Fourier transform.

f(t) 1 /00 F(w)e™'dw = % /_LL F(w)e™tdw

o oo
The complex Fourier series for F(w) on [—L, L] is given by
F(w) — Z Cnemrz'w/L

where

1 L

— i _LF(w)e—nﬂiw/de

Cn
Now compare this equations to conclude that

w3 ()

and

= 5 5 ()

n=—oo

Substitute this series for F'(w) in f(t) to get

f(t) — %% /_i i f <nfﬂ-) e—nwiw/Leiwtdw

Interchanging the summation and the series, we get

27



Theorem 10 (The sampling theorem)

f(t) = % ngoof (%) /i gh(t—n/L) g

This means that f(t) is known for all t if just the function values
f(nm/L) are known for integer values of n. That is, if we sample the
signal (function) and determine its values at 0, =7 /L, +27/L, ..., then
the entire signal can be reconstructed.

3.1 FFT

Often we are interested in properties of a function f, knowing only measured
values of f at equally spaced time intervals

ty = kAt, keZ,At>0

If this discrete function f has the period T'= NAt, then f is described by
the vector

Yo f(O)
(i f(At)
y= : - :
Yn-_1 FU(N —1)At)

Definition 9 (Discrete Fourier coefficient)
Assume T = 2x then the Fourier coefficient of y is defined

| N1
2w
Ck::NZyje MY k=0,1,..., N—1

j=0

Definition 10 (Discrete Fourier transform (DFT))
The mapping F : €Y — €, defined by
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with

T
ck::NZijfV’, k=0,1,... , N—-1
j=0

is called the discrete Fourier transform (DFT).
If we use the N x N Fourier-Matrix

1 1 1 - 1
1 wy wi oo whT!
2(N-1
oo |1 wh b ud
1 w%_l w%N_l) ‘. wg\f,v_l)z

then we can write (14) as

1
—_F
c= NN

Theorem 11
It follows, that

FNFN :FNFN = NE

ie.
1—
Fy'=_F
N N N
Proof.
N-1 N-1
kio T _ kni _ )N, U=k
> utfull = 3t = {
= = 0, l#k
This is because z := wh ! is a Nth root of Unity and z # 1 if k # [
N-1 N-2 2V -1
2T 42Ttz + 1= 1=0 z#1
Z—
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Definition 11 (Inverse discrete Fourier transform (IDFT))

The inverse mapping y = Fic is called the inverse discrete Fourier transform
(IDFT)

yi=>» quwy, j=01,.. ,N-1 (15)

Some properties of the DFT are:

Linearity
oy + [z DT e+ Bd
Parseval
N-1
\%\2 Z |yk‘2
k=0

Theorem 12 (Fast Fourier Transform (FFT))
IF N is even (N=2M), then y = Fyc (and analog ¢ = +Fny) can be put
down to two discrete transforms.

We divide ¢ in its odd and even indices

e:=(co,C,... ,cn_2) € CM
and
0:=(ci,c3,...,cn1)" €CY
M-1 M-1
yk—Zch] Zw Wej +w* Yy (wh)o; k=0,1,... ,N—1
=0 =0

y is splitted in

a = (yanlv cee 7yM—1)T € CM

and
b:= (yMayM-I-la s ayN—l)T € CM
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It follows (wh™ = —wk) that

M1 M-1

ak:Z(w?V)kjej+wk (wi)¥o; k=0,1,...,M—1
=0 =0
M-1 M-1

by = Z(w]zv)kjej—wk (wi)0; k=0,1,...,M—1
=0 =0

w? is an Mth root of unity, so the above sums describe two IDFT

a = Fyre + Diag(1,wyy, ... ,wii 1) Fyo
b = Fye — Diag(1,wyy, - .. ,wht ) Fy0

In order to perform a Fourier transform of length N, one need to do two
Fourier transforms Fjse and Fys0 of length M on the even and odd elements.
We now have two transforms which take less time to work out. The two sub-
transforms can then be combined with the appropriate factor w* to give the
IDFT. Applying this recursively leads to the algorithm of the Fast Fourier
transform (FFT).

/*
X and y are real and imaginary arrays of 2°m points.
dir = 1 gives forward transform
dir = -1 gives reverse transform

*/

FFT(int dir, int m, double *x, double *y)
{

int n,i,it,j,k,12,1,11,12;

double ci1,c2,tx,ty,tl,t2,ul,u2,z;

/* Number of points */

n=1;
for (i=0;i<m;i++)
n x= 2;

/* Bit reversal */
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i2 = n > 1;

j=0;
for (i=0;i < n-1; i++) {
if (1 < j {
tx = x[i];
ty = ylil;
x[i] = x[j]l;
y[il = y[j]1;
x[j]1 = tx;
yLil = ty;
}
k = 12;
while (k <= j) {
j = k;
k >>=1;
j*+=k;
}

for (i=0;i < n; i++) {

printf("x[%i] = %f  y[%i]l = %f\n", i, x[i], i, y[il);
}
printf(" ————————————————————————— \n") ;

/* compute the FFT %/
cl = -1.0;
c2 =0.0;
12 = 1;
for (1=0;1<m;1++) {
11 = 12;
12 <<= 1;
ul = 1.0;
u2 = 0.0;
for (j=0;j<11;j++) {
for (i=j;i<n;i+=12) {
il = i + 11;
tl = ul x x[i1] - u2 * y[i1];
t2 = ul * y[i1] + u2 * x[i1];
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X[l] = ti’

y[i] += t2;
}
z = ul * ¢l —u2 * c2;
u2 = ul *x c2 + u2 * ci;
ul = z;

}
c2 = sqrt((1.0 - c1) / 2.0);
if (dir == 1)
c2 = —-¢c2;
cl = sqrt((1.0 + ¢c1) / 2.0);
}

/* scaling for forward transform */
if (dir == 1) {
for (i=0;i<n;i++) {
x[i] /= n;
y[il /= n;
}
}
}

3.2 Problems

Exercise 8
The Heaviside function H(t) is given by

H(t):{o t<0

1 t>0

Find the Fourier transform of

Possible solutions are
1.




1
F =
(w) a+w
3.
1
F =
() w+1a

Yes, that’s right.
The Fourier transform is

F(w)z/ e et
0

-1 o0
— e—(a—H’w)t
a+iw 0
1
- a+ iw
Sorry. Please try again.
Sorry. Please try again.
Exercise 9
Determine the value of
i = e2z’w eiwt
2m J_o O+ w

Possible solutions are:

1.
H(t + 2)e 52
2.
H(t)e?
3.

He 30+2))
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Yes, that’s right.

1
5+ iw

Fr )= f(t) = H(T)e ™

Applying the time time-shifting theorem on f(t + 2)

e21w

5+ tw

F{ft+2)} =

Therefore
1 0 e2iw

iwt g _ —5(t+2)
= dw=f(t+2)=H(t+2
2r _005+iwe w=ft+2) (t+2)e

Sorry. Please try again.
Sorry. Please try again.

Exercise 10
Use the Fourier transform to find one solution y(t) of

y()" +3y(t) +2y(t) = 0

1.
eft_ef2t t>0
t) = -
y(t) {0 t<0
2.
et —e? t>0
t) = -
y() {0 t<0
3.

et+e2 t>0
y(t)={
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Yes, that’s right.
Apply the Fourier transform on the differential equation

—w?Y (W) + 3iwY (w) +2Y (w) = 0

1
Y —
() —w? + 3w + 2
Therefore
yt) = F H{—y 1
—w? + 3w + 2
Factoring
—w? 4 3iw + 2 = (2 4+ w)(1 + iw)
Then
y(t) = F o} = H(t)e ™ « H(t)e™
24+iwl+iw

Compute this convolution

et fot e"dr t>0

H(t)e ™ x H(t)e " = {0 F 20

Finally

et—e 2 t>0
0 t<0

Sorry. Please try again.
Sorry. Please try again.

Exercise 11 (Convolution theorem)
The Fourier transform of y(z), g(z) and r(z) are denoted by Y (w), G(w) and
R(w). Solve for y(x) the integral equation

y(2) = g() + / " Yz — u)du

—00
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Possible solutions are:

1.
y(z) = % /00 G(w) * R(w)e™*dw
2.
_ 1 *1 _R(w) iwe
y( ) ﬂ/oo G(w) e dw
3.

_ 1 ® G(CU) we
y(z) = %/ooil—R(w)e dw

Sorry. Please try again.

Sorry. Please try again.

Yes, that’s right.

Taking the Fourier transforms of both sides of the given integral equation,
we have by the convolution theorem

Y(w) =Gw)+Y(w)R(w)

or
G(w)
Y —
@) =1"Re)
Then
_ G(w)
= F Yy =7
y(z) =F {Y(w)} 1~ R(@)
Exercise 12
The Fourier matrix F} is
1.
1 1 1 1
1 2 -1 —2
1 -1 1 0
1 2 0



11 1 1
1 72 -1 —
1 -1 1 -1
1 ¢« -1 1
3.
1 2 -1 —2
1 1 1
1 -1 1 -1
1 2+ =1 =
Sorry. Please try again.
Yes, that’s right.
wy = ™% =i = wd = w)
wi =e"? = —1 = w$
wi—eiﬂ/z: z—wz
wi =e"? =1=uw
11 1 1
1 2 -1 —i
FB=1y 4 1 4
1 7 -1 3

Sorry. Please try again.
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