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Optimization of Flapping Airfoils for Maximum Thrust
and Propulsive Efficiency

Ismail H. Tuncer∗ and Mustafa Kaya†
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The thrust and/or propulsive efficiency of a single flapping airfoil is maximized by using a numerical optimization
method based on the steepest ascent. The flapping motion of the airfoil is described by a combined sinusoidal plunge
and pitching motion. Optimization parameters are taken to be the amplitudes of the plunge and pitching motions
and the phase shift between them at a fixed flapping frequency. Two-dimensional, unsteady, low-speed, laminar,
and turbulent flows are computed by using a Navier–Stokes solver on moving overset grids. Computations are
performed in parallel in a computer cluster. The optimization data show that high thrust values may be obtained
at the expense of propulsive efficiency. For a high propulsive efficiency, the effective angle of attack of the airfoil is
reduced, and large-scale vortex formations at the leading edge are prevented.

Nomenclature
a∞ = freestream speed of sound
Ct = average thrust coefficient
c = airfoil chord length
h = plunge position
ho = plunge amplitude nondimensionalized with c
k = reduced frequency, ωc/U∞
Re = Reynolds number based on the chord length
T = period of a flapping motion
t = time nondimensionalized with a∞/c
U∞ = freestream velocity
α = pitch angle
αo = pitch amplitude
η = propulsive efficiency
ω = angular frequency

Introduction

B ASED on observations of flying birds and insects and swim-
ming fish in nature, flapping-wing propulsion has already been

recognized to be more efficient than conventional propellers for
very smallscale vehicles with wing spans of 15 cm or less, so-called
micro-air vehicles (MAVs). Because the primary mission for MAVs
is surveillance, they are desired to have good maneuverability and
sustained flights with flight speeds of 30–60 km/h. The current in-
terest in the research and development community is, therefore, to
find the most energy-efficient airfoil adaptation and wing motion
technologies capable of providing the required aerodynamic perfor-
mance for a MAV flight.

Recent experimental and computational studies investigated the
kinematics, dynamics, and flow characteristics of flapping wings
and shed some light on the lift, drag, and propulsive power
considerations.1,2 Water-tunnel flow visualization experiments on
flapping airfoils conducted by Lai and Platzer3 and Jones et al.4

provide a considerable amount of information on the wake char-
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acteristics of thrust-producing flapping airfoils. In their experi-
ments, Anderson et al.5 observed that the phase angle between pitch
and plunge oscillations plays a significant role in maximizing the
propulsive efficiency. Navier–Stokes computations performed by
Tuncer and Platzer,6,7 Tuncer et al.,8,9 Isogai et al.,10 and Isogai and
Shinmoto11 explore the effect of flow separation on the thrust gen-
eration and the propulsive efficiency of a single flapping airfoil in
combined pitch and plunge oscillations.

Jones and Platzer12 and Jones et al.13 recently demonstrated a
radio-controlled MAV propelled by flapping wings in a biplane con-
figuration (Fig. 1). The experimental and numerical studies by Jones
and Platzer,12 Jones et al.14,15 and Platzer and Jones16 on flapping-
wing propellers points at the gap between numerical results and the
actual flight conditions with high-frequency flapping wings. They
also observed that the performance of flapping airfoils may be en-
hanced or limited by the onset of dynamic stall, and large-scale flow
separation.

In our earlier study,9 the average thrust coefficient of a NACA0012
airfoil flapping in plunge was obtained for a range of reduced fre-
quencies and amplitudes of the flapping motion (Fig. 2). As can be
seen, the thrust coefficient varies significantly with the frequency
and amplitude of the flapping motion. The computational and ex-
perimental findings show that thrust generation and propulsive effi-
ciency of flapping airfoils are closely related to the flapping motion
and flow parameters, such as the flapping frequency, the amplitude
of the pitch and plunge motions, the phase shift between them, air
speed, and turbulence. It is apparent that to maximize the thrust
and/or propulsive efficiency of a flapping airfoil, an optimization of
all of these variables is needed.

In this study, the average thrust and/or the propulsive efficiency
of a flapping airfoil undergoing a combined plunge and pitch mo-
tion (Fig. 3) is maximized by using a gradient-based optimization
process. The optimization variables are taken to be the pitch and
plunge amplitudes ho and αo and the phase shift between the pitch
and plunge motions φ. The gradient of the objective function is
evaluated numerically by perturbing the optimization variables and
computing the unsteady flowfield for a few periods of the flapping
motion until a periodic flowfield is established. The flowfield around
a flapping airfoil is discretized by using moving overset grids. The
unsteady flow solutions for the evaluation of the gradient vector are
computed in parallel in a computer cluster.

Numerical Method
Two-dimensional unsteady viscous flows around a flapping airfoil

are computed by solving the Navier–Stokes equations on moving
overset grids. The flow variables at the intergrid boundaries of over-
set subgrids are interpolated from the donor subgrid. Computations
on each subgrid are performed in parallel. Parallel virtual machine
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Fig. 1 MAV with flapping wings.13

Fig. 2 Variation of thrust coefficient for a flapping airfoil in plunge.9

Fig. 3 Flapping motion of an airfoil in combined plunge and pitch.

(PVM) message-passing library routines are used in the parallel
solution algorithm.17 The unsteady flow solutions are analyzed in
terms of average thrust coefficient and propulsive efficiency values
and unsteady particle traces.

Navier–Stokes Solver
The strong conservation-law form of the two-dimensional, thin-

layer, Reynolds-averaged Navier–Stokes equations is solved on each
subgrid. The governing equations in a curvilinear coordinate system
(ξ, ζ ) are given as follows:

∂t Q̂ + ∂ξ F̂ + ∂ζ Ĝ = Re−1∂ζ Ŝ

where Q̂ is the vector of conservative variables, Ĝ are the con-
vective flux vectors, and Ŝ is the thin-layer approximation of the
viscous fluxes in the ζ direction normal to the airfoil surface.6 The
convective fluxes are evaluated by using the third-order-accurate
Osher’s upwind-biased flux difference splitting scheme. In turbu-
lent flow computations, the Baldwin–Lomax turbulence model is
used.

Fig. 4 Overset grid system.

The discretized equations are solved by an approximately fac-
tored, implicit algorithm. The holes in the background grid formed
by the airfoil grid are excluded from the computations by an
“i”-blanking algorithm.17

Computational Domain
The computational domain is discretized with overset grids. A C-

type grid around the airfoil is overset onto a Cartesian background
grid (Fig. 4). In our earlier study,9 grid-independent solutions on
overset grid systems were already established. The flapping motion
of the airfoil is imposed by moving the airfoil and the grid around
it on the background grid. The flapping motion of the airfoil in
combined plunge h and pitch α is specified by

h = −ho cos(ωt), α = −αo cos(ωt + φ)

where the angular frequency ω is given in terms of the reduced
frequency, k = ωc/U∞; φ is the phase shift between plunge and
pitching motions. The pitching motion is about the midchord
location.

Intergrid Boundary Conditions
At the intergrid boundaries formed by the overset grids, the con-

servative flow variables are interpolated in each timestep of the
unsteady solution. Intergrid boundary points are first localized in
a triangular stencil in the donor grid by a directional search algo-
rithm. The localization process incidentally provides the interpola-
tion weights to interpolate the flow variables within the triangular
stencil.17

Optimization
The objective function is taken as a linear combination of the

average thrust coefficient Ct and the propulsive efficiency η over a
flapping period:

O(Ct , η) = (1 − β)
Ct

Ct + ε|∇Ct · D| + β
η

η + ε|∇η · D|

Ct = − 1

T

∫ t + T

t

Cd dt

η = CtU∞

/
1

T

∫ t + T

t

∫
S

p(V · dA) dt

The denominator in the efficiency expression accounts for the av-
erage work required to maintain the flapping motion; ε denotes the
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optimization step size. Note that β = 0 sets the objective function
to a normalized thrust coefficient.

The optimization process is based on following the direction of
the steepest ascent of the objective function O . The direction of
the steepest ascent is given by the gradient vector of the objective
function:

∇O(V) = ∂O

∂V1
v1 + ∂O

∂V2
v2 + · · ·

where Vi are the optimization variables and vi are the corresponding
unit vectors in the variable space.

The components of the gradient vector is then evaluated numer-
ically by computing the objective function for a perturbation of all
of the optimization variables one at a time. Note that the evaluation
of these vector components requires an unsteady flow solution over
a few periods of the flapping motion until a periodic flow behavior
is reached. Once the unit vector in the steepest ascent direction is
evaluated by

D = ∇O/|∇O|
a small step in the steepest ascent direction, 
V = εD, is taken
until a local maximum is reached. Reference 18 suggests that the
step size ε should be such that |∇O(V + εD)|2 is minimum. That
is,

∂(|∇O(V + εD)|2)
∂ε

= 0

An approximate solution for ε based on the second-order Taylor
series expansion is given by18

ε = − ∇O · (∇∇O) · D
D · (∇∇O) · (∇∇O) · D

(1)

where ∇∇O is a symmetric tensor known as the Hessian. The
vector (∇∇O) · D points at a direction where the gradient of the
objective function becomes zero based on the quadratic expan-
sion. The Hessian involves the second derivatives of the objec-
tive function with respect to optimization variables, ∂2 O/∂Vi∂Vj ,
and its computation is prohibitively expensive. However, to de-
termine a proper step size, the following approximation is made
based on the vector norms and the negative definiteness of the
Hessian:

∇O · (∇∇O) · D ≈ −|∇O||(∇∇O) · D|
Substitution into Eq. (1) then yields

ε ≈ |∇O|/|(∇∇O) · D|
|(∇∇O) · D| is now evaluated by a backward finite difference ap-
proximation:

|(∇∇O) · D| ≈ |∇O(Vn) − ∇O(Vn − 1)|/εn − 1

Parallel Computation
A coarse parallel algorithm based on domain decomposition is

implemented in a master–worker paradigm.19 The overset grid sys-
tem is first decomposed into its subgrids, and the solution on each
subgrid is assigned to a separate processor in the computer cluster.
In addition, the background grid may be partitioned to improve the
static load balancing. Intergrid boundary conditions are exchanged
among subgrid processes at each timestep of the unsteady solution.
PVM (Ver. 3.4.4) library routines are used for interprocess com-
munication. In the optimization process, unsteady flow solutions
with perturbed optimization variables, which are required to deter-
mine the gradient vector of the objective function, are all computed
in parallel. Computations are performed in a cluster of computers
with dual Pentium-III processors operating on a Linux operating
system.

Results and Discussion
In this study the flapping motion parameters of a NACA0012 air-

foil oscillating in a combined plunge and pitch is optimized for maxi-
mum thrust production and/or propulsive efficiency. As a validation
of the method developed, a pure plunge motion of a NACA0012
airfoil is considered first. The flow is fully turbulent. The objec-
tive function is the thrust coefficient, and the plunge amplitude ho

is the only optimization variable. Optimization steps are given in
Fig. 5 and compared with the parametric study presented in Fig. 2.
As shown, the optimization algorithm works well. The plunge am-
plitude ho = 0.72, which maximizes the thrust at Ct = 0.18, is ap-
proached rapidly.

In the following study, the reduced frequency of the oscillatory
motion is fixed at k = 1. In an earlier optimization study with airfoils
oscillating only in plunge,20 the reduced frequency was taken as an
optimization variable, and it was established that the thrust produc-
tion increases with the flapping frequency in the k = 1–4 range. The
optimization variables are now taken to be the plunge and pitch
amplitudes (ho, αo) and the phase shift between plunge and pitch
motions (φ). Table 1 summarizes the optimization cases studied and
the initial values of the optimization variables. All of the flows are
computed at Re = 1 × 104 and M = 0.1, and except for case 11, they
are all assumed laminar in accordance with the flying MAV model.13

The parallel computations with eight processors take about 20–30 h
of wall-clock time for a typical optimization case.

In case 1, where β = 0, the average thrust coefficient is maxi-
mized. The time variation of the unsteady drag (negative thrust) co-
efficient along a few optimization steps is shown in Fig. 6. After the
optimization variables are incremented along the optimization steps,
the unsteady flow computations are carried out for several periods of
the flapping motion until a periodic behavior is obtained. The peri-
odicity of the flow is checked by comparing the average thrust values
for consecutive periods. The variation of the average thrust coeffi-
cient and the propulsive efficiency with respect to the optimization

Table 1 Optimization cases and starting conditions

Case β ho αo φ

1 0.0 0.5 5 30
2 0.5 0.5 5 30
3 1.0 0.5 5 30
4 0.0 0.5 25 60
5 0.0 1.0 5 60
6 0.0 1.0 25 90
7 1.0 0.5 25 60
8 1.0 1.0 5 60
9 1.0 1.0 25 90
10 (M = 0.2) 0.0 0.5 5 30
11 (Turb.) 0.0 0.5 5 30

Fig. 5 Optimization of thrust coefficient at M = 0.3, Re = 106, k = 0.5.
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variables are shown in Fig. 7. It is observed that as the optimization
variables are incremented along the gradient vector of the objective
function, the average thrust coefficient increases gradually. A max-
imum value of 1.41 is finally reached at ho = 1.60, αo = 23.5, and
φ = 103.4 deg. The corresponding propulsive efficiency is 28.3%.

All of the results of the optimization cases are given in Table 2.
In case 2, where β = 0.5, the average thrust and the propulsive effi-
ciency have equal weights in the objective function. As a result, the
propulsive efficiency is improved at the expense of average thrust. It
is observed that the higher efficiency is achieved at a lower plunge
amplitude and a higher pitch amplitude. The phase shift slightly
drops to 97.8 deg. In case 3, the propulsive efficiency is maxi-
mized at low pitch and plunge amplitudes with a corresponding
very low thrust coefficient. It is well known that the propulsive ef-
ficiency and the thrust production of flapping airfoils are inversely
proportional.

Table 2 Optimization results

Case ho αo φ Ct η,%

1 1.60 23.5 103.4 1.41 28.3
2 1.36 29.6 97.8 1.08 44.1
3 0.45 15.4 82.4 0.08 58.5
4 1.73 23.8 100.7 1.44 25.4
5 1.52 26.9 87.2 1.27 33.4
6 1.55 28.6 94.9 1.45 35.9
7 0.57 21.0 86.7 0.13 63.8
8 0.60 22.8 86.1 0.13 64.8
9 0.83 35.6 86.5 0.18 67.5
10 1.53 20.0 94.9 0.95 23.2
11 2.11 36.6 102.9 2.64 34.2

Fig. 6 Cd history along optimization steps, case 1: β = 0.

Fig. 7 Optimization steps for case 1: β = 0.

The unsteady flowfields along the optimization steps are investi-
gated with particle traces. The particles are emitted from a straight
line in the vicinity of the leading edge of the airfoil and are con-
vected in the flowfield with the local flow velocity. The vertical line
from which the particles are emitted follows the leading-edge of the
airfoil to capture the leading edge vortex formations in more detail.
In Fig. 8, the instantaneous particle traces at the instant of maximum
thrust (minimum drag) in a flapping period are given along the op-
timization steps of cases 1 and 3. The corresponding instantaneous
pressure distributions on the airfoil are also given in Fig. 9. In both
the particle traces and the leading-edge suction induced by the vortex
shown in the pressure distributions, it is observed that in case 1, the
leading-edge vortex formation is promoted along the optimization
steps. The maximum instantaneous thrust occurs at about the mean
amplitude position as the leading-edge vortex develops, just before
the suction field at the leading edge collapses as the leading-edge
vortex moves off the airfoil and is convected downstream, whereas
in case 3, the leading-edge vortex, which is present initially, is first
reduced in strength and finally disappears along the optimization
steps. Instead, a weak trailing-edge vortex formation is observed.
The unsteady flow now becomes more streamlined with the motion
of the airfoil, and the propulsive efficiency is maximized at 58.5%.

Figure 10 shows the optimized flowfield for maximum thrust in
case 1. The flowfield is observed to be highly vortical, with strong
leading-edge vortices forming during the upstroke and the down-
stroke. The flowfield is periodic and antisymmetric along the up-
stroke and the downstroke.

Next, the optimization space is searched for other possible local
maximums of the objective function for cases 1 and 3. It is imple-
mented by initiating the optimization process from various initial
conditions as given in Table 1. The initial conditions and the opti-
mized states at the end of the optimization processes are shown in
Figs. 11 and 12 for β = 0 and 1, respectively. Figure 11 reveals that
all of the optimization processes for β = 0 converge about the same
value of the average thrust coefficient (Ct ≈ 1.4) at about the same
values of the optimization variables. It suggests that the global max-
imum of the objective function may have been found. On the other
hand, although the optimization processes for maximizing propul-
sive efficiency converge about the same propulsive efficiency value
(η ≈ 65%), the optimum states for ho and αo show a considerably
large variation (Fig. 12). It appears that the maximum flapping ef-
ficiency may be achieved in a range of ho and αo values, where αo

increases as ho does in this range.
In case 10, the optimization process for maximum thrust is re-

peated at a higher Mach number, M = 0.2 (Fig. 13). Although the
trend along the optimization process is similar to that of case 1,
where M = 0.1, the maximum thrust is reached early at a relatively
low plunge amplitude, ho = 1.53, and αo = 20 deg. The thrust value
of 0.95 is about 30% smaller than that of case 1. It appears that as the
Mach number increases, large suction pressures due to leading-edge
vortices cannot be sustained at plunge and pitch amplitudes as high
as in case 1. This may be attributed to the weakened and displaced
leading-edge vortex due to compressibility effects.
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Fig. 8 Instantaneous particle traces at the instant of maximum thrust along the optimization steps for cases 1 and 3.

In case 11, the flow is assumed to be fully turbulent. It is appar-
ent that as the flow separation and vortex formation at the leading
edge is delayed due to turbulence, higher plunge and pitch ampli-
tudes, ho = 2.11, αo = 36.6, and a corresponding high thrust value
of Ct = 2.64 may now be achieved.

The optimum flapping motions for cases 1–3 and 9 are shown
in Fig. 14. It is clearly observed that the plunge amplitude plays
a significant role in thrust generation. It is also observed that to
improve the propulsive efficiency, the plunge amplitude is to be
reduced and the pitch amplitude is to be increased. Note that the

phase shift between the plunge and the pitch motions, which is
in the 85–100-deg range, helps the effective angle of attack to be
reduced at the mean plunge position, where the plunge velocity is
maximum.

The variation of the effective angle of attack the airfoil sees along
a flapping period is given in Fig. 15 for cases 1–3. The flapping pe-
riod starts at θ = 0 deg, which corresponds to the h = −ho position
of the airfoil. In agreement with the earlier observation, for a high
thrust production, as in cases 1 and 2, the flapping airfoil stays at
large effective angles of attack for a large fraction of the flapping
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Fig. 9 Variation of surface pressure distribution along the optimization steps for cases 1 and 3: β = 1.0.

Fig. 10 Instantaneous particle traces along a period of the optimized flapping motion for case 1.

Fig. 11 Maximization of thrust coefficient (β = 0) with various starting conditions, cases 1 and 4–6.
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Fig. 12 Maximization of propulsive efficiency (β = 1) with various starting conditions, cases 3 and 7–9.

Fig. 13 Optimization steps for case 10: β = 0.

Fig. 14 Optimized flapping motions.
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Fig. 15 Variation of effective angle of attack along a flapping period.

period. The maximum effective angle of attack occurs at about h ≈ 0
(θ = 90, 270 deg), the mean plunge position. As a result, a strong
leading-edge vortex formation is promoted. On the other hand, for
an efficient flapping as in case 3, not only is the duration in which
the airfoil sees large effective angles of attach reduced, but also the
position of the maximum effective angle of attach shifts to h = ±ho

(θ = 0, 180, 360 deg), the minimum and the maximum plunge am-
plitudes. In contrast to cases 1 and 2, the effective angle of attack at
the mean plunge position is now set about 0 deg, which apparently
prevents the leading-edge vortex formation.

Conclusions
A gradient-based numerical optimization is successfully applied

to maximize the thrust generation and/or propulsive efficiency of
an airfoil flapping in a combined plunge and pitch motion. The
optimization of thrust generation and propulsive efficiency together
is achieved with a weighted and normalized objective function. The
parallel implementation of the optimization algorithm is shown to
be quite robust. Thrust generation of a flapping airfoil is maximized
at large plunge amplitudes as large leading-edge vortices form and
shed into the wake. The thrust-producing airfoil stays at a large
effective angle of attack during most of the flapping period. On
the other hand, the propulsive efficiency of flapping airfoils may
be increased by reducing the plunge amplitude and the effective
angle of attack and, consequently, by preventing the formation of
leading-edge vortices. Further research is in progress to implement
the present optimization method to the thrust generation of flapping
airfoils in a biplane configuration.
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