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Preface

“I call our world Flatland, not because we call it so, but to make its
nature clearer to you, my happy readers, who are privileged to live in
Space.

Imagine a sheet of paper on which straight Lines, Triangles, Squares,
Pentagons, Hexagons, and other figures, instead of remainaing fixed in
their places, move freely about, on or in the surface, but without the
power of rising above or sinking below it, very much like shadows — only
hard and with luminous edges — and you will then have a pretty good
notion of my country and countrymen. Alas, a few years ago, | should
have said “my universe”: but now my mind has been opened to higher
views of things.”

E. A. Abbott, ‘Flatland. A Romance of Many Dimensions’






Acknowledgements

Acknowledgements written in a thesis front-page are useless. Nobody reads theses any-
ways. And those! I feel indebted towards know it anyhow. I presume.

IDie allermeisten Danksagungen beginnen mit “Zuforderst mochte ich meinen Eltern danken, die . ..
?. And then continue with “many thanks also to my friends ..., sans votre soutien ... ”.

Naturlich bin ich meinen Eltern dankbar, ohne sie ware diese Arbeit nicht geschrieben worden, ohne
sie ware ich weder hier, noch irgendwo. Aber wenn ich ihnen das auf dieser Seite sagen muf}, haben sie
und ich versagt. Sparen wir’s uns.

Et je ne voudrais pas me passer du soutien de la part de Patricia, Kevin, Stella, James, Carrie, Bill
and Margaret. Their friendship and support did make a difference. Mais ils ne vont pas lire ces pages,
so 1t 1s futile to thank them here, and a bottle of Bordeaux is more appropriate.

The special environment at both the von Karman Institute in Rhode-St.-Genése and the Keck Lab-
oratory for CFD at the University of Michigan does deserve credit in the progress of this thesis. Both
places provided me with, apart from bed and bread (which is to be taken literally as well), inspiration
and vision. The peers I had at both places, Henri, Robert, Sami, Lisa and Greg, contributed to this with
their ideas and criticism. J’ai eu beaucoup de chance de pouvoir combiner le meilleur de ’ancien et du
nouveau monde, et cela valait la peine du trajet. But, as my many returns indicate, I never stopped
praising both places, so this one here should be left off.

I am also grateful to Prof. Greg Hulbert for showing interest in my work and being on my committee.
He is one of the few people who have actually read it before the defense! Prof. Bram Van Leer had his
door always ajar for my questions, and I appreciated that very much for soliciting a second opinion at
times. Since I am fortunate enough to have both of them on my committee, I can thank them in person.

Ken Powell was instrumental in establishing the collaboration between the CFD-group at VKI and the
Keck laboratory, a most successful one by all standards, and helped me come to the Keck. His support
started with offering me his living-room couch and never ceased. I do hope though that I can make up
for that other than just acknowledging it.

There are two mentors, however, who would make it worthwile to write an acknowledgement page.
Without the advice and guidance of Herman Deconinck and Phil Roe, this thesis would not have been
written. I have seen and heard of many thesis-supervisors, for whom a doctoral candidate is a cheap
laborer rather than a student. Phil and Herman were true advisors in the sense that they generously
gave me the space to pursue broad interests in my personal education, explore my own projects, make
my own mistakes, and take credit for my own ideas. They did rescue my boat when it was on the brink
of being steered into a reef, but they respected my seamanship and trusted me to set my own course
when the waters were deep. I will remain indebted to both of you. But, having given up poetry at the
age of 18, I am uttely unable to word this. And, besides, I think, both of you know.






Table of Contents

“My point and period will be thoroughly wrought
or well or ill, as this day’s battle’s fought.”

W. Shakespeare, ‘King Lear’, Act V, Sc. 1

Preface . . . . . . . . iii

Acknowledgements . . . . ... ..o v

List of Figures . . . . . . . . . . . . .. xi
Chapter

I. Introduction . . . . . . .. ... 1

1.1 Treatment of the Multi-Dimensional Euler Equations . . . . . . .. 1

1.1.1 Rotating the Riemann Solver . . . . . . .. .. ... ... 2

1.1.2  Converging to the Steady State . . . ... ... .. ... 4

1.1.3 The Incompressible Approach . . . .. .. .. ... ... 4

1.1.4  Fluctuation-Splitting: the Dual View . . . .. ... ... 4

1.1.5 Splitting the System of Euler Equations . . . . . . .. .. 5

1.2 Unstructured Grid Generation . . . . .. .. .. .. ... ..... 5

1.2.1 Hierarchical Grid Methods . . . . . .. .. .. ... ... 6

1.2.2  The Advancing Front Method . . . . . .. ... .. ... 6

1.2.3  Delaunay Refinement Methods . . . . . .. .. ... ... 6

1.3 Courses Set, Waters Charted . . . . . .. .. .. .. ... ..... 8

II. Manipulating the Euler Equations . . . . . . .. .. .. ... ..... 9

2.1 From the 1-D Scalar Equation to the 2-D Euler System . . . . .. 11



viii Contents

2.2 Diagonalizing the Fuler Equations . . . . .. ... ... ... ... 11
2.3 Canonical Variables . . . . . .. ... .. 00000 13
2.4 Windfalls of Local Preconditioning . . . . .. .. ... .. ..... 13
III. The Discretization . . . . . . . . . ... .. ... ... ... ..... 17
3.1 One-dimensional Fluctuation-Splitting . . . . .. ... .. ... .. 18
3.2 Two-dimensional Fluctuation-Splitting . . . . .. ... .. .. ... 20
3.2.1 Three Design Criteria for 2-D Advection Schemes . . . . 21

3.2.2 The N-Scheme . . . . . . .. ... ... 000 25

3.2.3 The First-Order Upwind Finite-Volume Scheme . . . . . 26

3.2.4 The LDA-Scheme . . . . .. ... ... ... ... ... 27

3.2.5  The PSI-Scheme . . . . . .. .. .. ... 0. 29

3.3 The Lax-Wendroft Scheme for an Elliptic System . . . . . ... .. 32
3.4 Conservative Linearization . . . . . . . ... ... ... ... ... 34
3.5 Time Discretization . . . . . .. ... 0 oo 36
IV. Multigrid Convergence Acceleration . . .. ... .. ... ...... 39
4.1 The Full Approximation Storage Scheme . . . . . . . . .. .. ... 41
4.2 Application of Multigrid to Hyperbolic Problems . . . . . .. ... 43
4.3 Restriction and Prolongation Operators . . . . . ... .. .. ... 44
4.4 Cycling . . . . . 45
V. Unstructured Triangular Grids . . . . . . ... ... ... ....... 47
5.1 The Delaunay Triangulation . . . . . . . ... ... ... ... ... 47
5.2 Quality of the Delaunay Triangulation . . . . .. . ... ... ... 48
5.2.1  Maximum Angle Condition . . . . . .. ... ... .... 49

5.2.2 Regularity . .. . ... 49

5.2.3 Size Variation . . . .. ... ..o 50

5.3 The Frontal Delaunay Method . . . . . . .. ... ... ... ... 50
5.3.1 Generating the Delaunay Triangulation . . . . . ... .. 51

5.3.2 The Constrained Delaunay Triangulation . . . . ... .. 53

5.3.3 Searching the Delaunay Triangulation . . . . . . ... .. 53

5.3.4  Searching the Voronoi Diagram . . ... ... ... ... 54

5.3.5  The Distance Requirement for New Vertices . . .. ... 55

5.3.6 Extraction of a Vertex from the Delaunay Triangulation . 56

5.3.7  Generation of the Boundary Point Distribution . . . . . . 57

5.3.8 Generation of the Background Mesh . . . . . . .. .. .. 58



Contents ix

5.3.9 Placing New Vertices . . . . .. .. ... ... . .... 59

5.3.10 Summary of the Frontal Delaunay Algorithm . . . . . . . 61

54 Examples . . . . ..o 63

5.5 Laplacian Smoothing . . . . ... ... ... .. 0 64

5.6 Vertex-Nested Coarsened Meshes for Multigrid Schemes . . . . . . 65

5.7  Estimation of Angular Bounds . . . . ... ... .. ... ... .. 67

5.7.1  Upper Angular Bound . . . .. .. .. .. ... ..... 67

5.7.2  Lower Angular Bound . . . . . . .. ... ... ... ... 68

5.7.3 Measured Angular Bounds . . . . ... .. ... ... .. 68

5.7.4  Distribution of Grid Quality Parameters . . . . .. . .. 69

5.8 Summary . . ... .. 70

VI. Convergence Studies . . . .. .. .. ... .. ... ... ........ 7
6.1 One-Dimensional Problems . . . . ... ... ... .. ....... 77

6.1.1 Linear Advection . . . .. ... .. ... ... .. 77

6.1.2 Burgers’ Equation . . . . . ... ... 00 0oL 89

6.2 The Cauchy-Riemann Equations . . . . .. ... ... ... .... 94

6.2.1 Stagnation Flow in a Corner . . . . .. .. ... .. ... 94

6.2.2 Channel Flow with a Circular Bump . . . . . .. .. ... 96

6.3 The Euler Equations . . . . . .. .. ... ... 0L 100

6.3.1 Subsonic Flow over a Circular Bump . . . ... .. ... 101

6.3.2 Transonic Flow over a Circular Bump . . . . . . .. ... 108

6.4 Summary . . . ... .. e e 109

VII. Waters to Chart, Lands to Visit . . ... ... ... .. ........ 115
Bibliography . . . . . . . .. 119
Errata . . . . . . . 129

Abstract . . . . . 131






1.1
1.2

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13

4.1
4.2

5.1
5.2
3.3
5.4
3.9
5.6
5.7

List of Figures

Interpretation of a grid-oblique shear . . . . . . . ... .. ... 3
Acute cell and refined cell with twice the minimum angle. . . . . . . . .. 7
Linear variation of the data in 1-D Fluctuation-Splitting . . . . .. . .. 18
The one-dimensional linear basis function . . . . . . .. .. ... .. ... 19
The two-dimensional linear basis function . . . . . . .. .. ... .. ... 20
Median dual around anode . . . . .. ... oo 21
One-inflow-side and two-inflow-side triangles . . . . . . .. ... .. ... 24
Splitting of the velocities for the N-scheme . . . . . .. .. ... .. ... 25
The vertex-based Finite-Volume scheme . . . . . . . .. .. ... .. ... 26
Splitting of the residual for the LDA-scheme . . . . . . .. ... .. ... 28
Notation on a regular mesh of triangles . . . . . .. .. .. ... .. ... 28
Modification of the advection speed . . . . . . . . ... ... 30
Splitting of the residual for the PSI-scheme . . . . . . . .. ... .. ... 30
Contributing area of a triangle to a vertex . . . . . .. .. ... .. ... 33
Error damping of the Lax-Wendroff scheme . . . . . . . .. ... .. ... 34
One-dimensional Multigrid coarsening. . . . . . . . .. .. ... .. ... 40
The Multigrid Veycle . . . .. oo 000000 46
The Dirichlet tessellation . . . . .. .. ... ... 0. 48
Regular polygons leading to second order accurate residuals . . . . . . .. 49
Explicit and implicit triangles at the front . . . . . .. .. ... ... 50
Vertex insertion with Watson’s algorithm . . . . . .. ... ... ... .. 52
An initial triangulation of boundary vertices . . . . .. .. ... ... 52
A constrained Delaunay triangulation . . . . . ... .. ..o 00 53

Searching the Delaunay triangulation . . . . . ... .. .. ... .. ... 54



xi1

List of Figures

5.8

5.9

5.10
5.11
5.12
5.13
5.14
5.15
5.16
5.17
5.18
5.19
5.20
5.21
5.22
5.23
5.24

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13
6.14
6.15
6.16

Searching the Voronoi diagram . . . . . . .. . ... ... ... 55
Distribution of boundary vertices along a spline curve . . . . . . . . ... 57
Spacing interpolation on the initial background grid . . . . . .. .. ... 59
Spacing interpolation on the modified background grid . . . .. .. ... 60
Construction of a new vertex . . . . . . . .. .. ... oL 61
Three element airfoil with four rows of nodes . . . . . . .. .. ... ... 62
Three element airfoil, full view . . . . . . .. ... ..o 63
Three element airfoil, view of the wing sections . . . . . ... . ... ... 64
Three element airfoil, view of the flaps . . . . . . ... .. ... ... .. 65
Three element airfoil with smoothing, view of the flaps . . . . . .. . .. 66
Triangulation for the GAMM channel, 1643 vertices . . . . . .. .. ... 71
Obtuse triangle with a maximum angle . . . . . .. .. ... .. .. ... 72
Acute triangle with minimum angle . . . . . .. .. .. ... 72
Upper and lower angular bounds . . . . . . . ... ... ... ... ... 73
Distribution of angles and vertex degrees . . . . .. .. ... .. ... .. 74
Probability densities for minimum and maximum angles . . . . . . . . .. 74
Probability densities for the surface variation . . . . . . ... .. .. ... 75
Linear advection of a shear . . . . . . . . .. ... .. 000 78
Carpet plots of linear advection, four Multigrid levels . . . . . . .. . .. 81
Convergence of the N-scheme for linear advection . . . ... .. .. ... 82
Grid dependence of the N-scheme’s convergence . . . . . .. .. .. ... 83
Forward-FEuler vs. multistage time-stepping . . . . . . . ... .. .. ... 84
Convergence of the PSI-scheme for linear advection . . . . . .. .. ... 85
Grid dependence of the PSI-scheme’s convergence . . . . . . .. .. ... 86
Level dependence of the PSI-scheme’s convergence . . . . . . .. .. ... 87
Convergence of the LDA-scheme for linear advection . . . . . . ... ... 88
Burgers’ oblique shock testcase. . . . . . .. ..o oo 89
Carpet plots of Burgers’ oblique shock, four Multigrid levels . . . . . .. 91
Convergence for Burgers’ oblique shock . . . . . .. .. ... .. .. ... 92
Solution for Burgers’ equation after few cycles . . . . . .. .. ... ... 93
Three-ghostcell geometry for weak boundary conditions . . . . . . . . .. 95
Stagnation flow in a corner with the Cauchy-Riemann equations . . . . . 95

Convergence of the Lax-Wendroff-scheme for stagnation corner . . . . . . 96



List of Figures xiii
6.17  Convergence of the Lax-Wendroff-scheme with GauB-Seidel . . . . . . . 97
6.18 Cauchy-Riemann solution for the GAMM channel, 1643 nodes . . . . . 98
6.19  Convergence of the Lax-Wendroff-scheme for the GAMM channel 98
6.20 Ghostcell geometry for weak boundary conditions for Euler . . . . . .. 101
6.21  The geometry of the GAMM channel . . . . .. ... ... ... .... 101
6.22 Subsonic GAMM channel, 863 vertices . . . .. .. .. .. ... .. .. 102
6.23  Multigrid parameters and GauB-Seidel ordering . . . . . . .. ... .. 103
6.24  Subsonic GAMM channel, convergence on 863 node grid . . ... ... 104
6.25  Subsonic GAMM channel, convergence on 1592 and 3498 node grids . . . 105
6.26  Multigrid convergence for the subsonic GAMM channel . . . . . .. .. 106
6.27  Subsonic GAMM channel, solution after a few cycles . . . ... .. .. 107
6.28  Transonic GAMM channel, influence of the cell-CFL-number . . . . .. 111
6.29  Transonic GAMM channel, 863 vertices . . . . . .. .. ... ... ... 112
6.30  Transonic GAMM channel, convergence on 863 node grid . . . ... .. 112
6.31  Transonic GAMM channel, convergence on 1592 and 3498 node grids . 113
6.32  Multigrid convergence for the subsonic GAMM channel . . . . . .. .. 113






Chapter I

Introduction

“ ‘Oh if I only could write!” she cried (for she had the odd
conceit of those who write that words written are shared)”

V. Woolf, ‘Orlando’.

Computational Fluid Dynamics (CFD) has seen tremendous growth in the past three
decades. This is most fundamentally due to the wide variety of phenomena important
to our life that involve fluid dynamics, ranging from thunderstorms to blood circulation.
The desire to accurately simulate and understand these phenomena is met by a continuing
growth of the computer hardware. It is this growth that allows to think about software
that might someday be able to simulate the thunderstorm in time and space with all the
turbulent growth and decay in it, or the flow of blood around an artificial heart-valve that
is opening and closing periodically.

1.1 Treatment of the Multi-Dimensional Euler Equations

Today, CFD is still ‘a couple of breakthroughs’ away from being able to handle these
problems. Compared to structural mechanics, where the range of problems of interest
is similarly broad, CFD is far from having finished maturing. This is mostly due to
the complex mathematical structure of the Fuler- and Navier-Stokes equations that are
used to describe the motion of the fluid. In the sub-critical steady state these equations
are mixed hyperbolic and elliptic in character. Elliptic partial differential equations,
that in the Euler equations represent the acoustic propagation in all directions, have a
smoothing effect on the field, as can be seen from the behavior of the Cauchy-Riemann
equations. The hyperbolic partial differential equations on the other hand allow for the
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advection and creation of discontinuities and extrema in the solution, as can be seen
with Burgers’ equation. While excellent algorithms exist when dealing with each type of
equation separately, no similarly satisfactory methods exist for the mixed problem.

Pseudo-time-stepping of the unsteady equations has become the method of choice
for the time discretization, even when the steady-state solution is sought. Since the
unsteady Euler-equations are hyperbolic in the subsonic and supersonic regime, pseudo
time-stepping allows to treat the equations as one purely hyperbolic system. Naturally
there is a price: the convergence rates decay for low-speed problems or for problems where
stagnation regions are an important feature, as the elliptic character of the equations
becomes dominant.

In the past decade, algorithms for high-speed flows have seen significant progress,
partly due to the funding situation, partly due to the enormous progress brought to CFD
by the invention of Approximate Riemann solvers [1-3] used in Godunov-type schemes [4]
in the Finite-Volume context. In Finite-Volume schemes the data are constant or vary
linearly around the cell average over each cell, thus the data jump at the cell interfaces.
In one dimension, approximating the Riemann problem at the discontinuity leads to a
diagonalization of the system of equations and scalar advection schemes with an optimal
control of the numerical dissipation can be applied. It seemed that the solution of con-
vection dominated flows with highly discontinuous fields is stabilized by the introduction
of this discontinuity in the data representation.

A dimension-by-dimension extension of the one-dimensional concepts that considers
a set of only one-dimensional Riemann problems normal to cell-interfaces proved highly
successful and more robust than any other scheme used for high-speed flows. It was this
robustness that made CFD developers dream about automated flow codes that need little
user-intervention and that ultimately led to the modern commercial adaptive flow-codes
that run even on desktop PCs.

The continuous growth of memory and speed of the hardware have changed CFD in the
past years in two major ways: formerly subscale phenomena can now be incorporated in
finer meshes and need to be resolved properly, and ‘fluid-affected’ other than the military
and a few aerospace vendors can now afford the necessary number-crunching power to
apply CFD to their problems. And these problems turn out to be different.

1.1.1 Rotating the Riemann Solver

It has become clear that for a proper resolution of flow phenomena that are dominated
by viscous effects, the numerical dissipation of the Upwind schemes is still too high. As
such problems, blunt body separation or intake-manifold turbulence in the automobile
industry or the total pressure loss around a turbine blade come to mind. The simple one-
dimensional physics finally caught up with the numerical reality. E.g a shear flow oblique
to the grid lines, as might be encountered along the streamline leaving a separation point,
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is interpreted from these schemes as a grid-aligned shear that is preserved and a grid-

L R L R L R

Grid-oblique shear Grid-aligned shear Grid-normal compression

Figure 1.1: Applying one-dimensional concepts to higher-dimensional problems decom-
poses a grid-oblique shear into a grid-aligned shear and a grid-normal com-
pression.

normal compression to which additional but unnecessary numerical dissipation is applied.

Numerous attempts have been undertaken to make the solution less dependent on the
grid-orientation. In a class of schemes, termed ‘rotated Riemann solvers’ [5-7], the one-
dimensional Riemann problem is solved in a direction that is aligned with the streamlines
or the pressure gradient. However, this does not lead to convincing improvements for
second order accurate solutions and entails problems of robustness and monotonicity.
Clearly, while it is possible to align the 1-D problem with one direction of choice to capture
either shears or shocks, it is impossible to deduce a multi-dimensional interpretation of
the occurring flow phenomenon from only two states.

This conjecture i1s made in a more sophisticated fashion in a class of wave-modeling
Finite-Volume schemes [8-10]. The fluxes at the interfaces are calculated assuming a two-
dimensional wave-pattern of more than three waves. The resulting flux formulae bear
a striking similarity to the characteristic flux extrapolation method of [11] that makes
the dissipation dependent on an approximate diagonalization of the equations or the
multidimensional limiting of Sidilkover [12]. While these schemes show some improvement
in the recognition of all flow phenomena, they do not improve in general over second order
accurate dimensionally split schemes and, except for the two latter methods, can certainly
not rival their robustness.

Multidimensional state vector splitting [13] also makes use of the superposition of a
discrete number of waves, with the resulting elementary waves being integrated over all
possible directions in [14]. The subsonic performance of these schemes is still unclear,
however. Another modification of the Godunov type flux calculation is the genuinely
multidimensional Riemann solver [15], where the exact solution to the two-dimensional
Riemann problem is computed for fluxes across the interfaces. Not too surprisingly a very
costly procedure.
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1.1.2 Converging to the Steady State

Another problem of hyperbolic Finite-Volume methods that has become more pressing on
larger grids is the poor convergence for low-speed flows. The stability of explicit methods
for the unsteady Euler equations depends on the largest wave-speed, u + ¢, the sum of
the mean flow speed and the speed of sound. However, some of the information of the
flowfield is carried with the slower speeds, u and u — ¢, which vanish in the stagnation
point and the sonic point, respectively, thus resulting in a ‘stiff” problem. Even with
preconditioning and Multigrid techniques, solutions for low-speed flows using compressible
Finite-Volume methods can only be obtained at costs far superior to the one of methods
designed specifically for the steady incompressible Euler and Navier-Stokes equations.

1.1.3 The Incompressible Approach

One such method, the Finite-Element method that was developed in structural mechan-
ics, has brought a new level of robustness and accuracy to the computation of low-speed
flows. The variational formulation yields a rigorous error control for elliptic problems
that has been a breakthrough for adaptive mesh refinement schemes. For convection-
dominated problems, these schemes are augmented by various forms of streamwise diffu-
sion terms [16,17] in order to improve their stability for highly discontinuous solutions.
These improvements are impressive when applied to scalar equations, and not too surpris-
ingly these SUPG schemes exhibit a close relationship to Upwind schemes when applied to
scalar equations. However, their data representation is profoundly different from Finite-
Volume schemes: the data are stored at the vertices of the grid and assumed to vary
linearly over each cell. Thus, there are no discontinuities in the data.

1.1.4 Fluctuation-Splitting: the Dual View

The dual view of data representation taken by the Fluctuation-Splitting approach [18]
brings a new level of unification to the theory of ‘Mixed Elements’ [19-21]. Fluctuation-
Splitting uses a Finite-Element data representation with unknowns at the vertices and
a solution that varies linearly over each cell. With the continuous data, the interface
Riemann-problem becomes obsolete and it is easier to formulate genuinely multidimen-
sional schemes that depend on physically relevant directions rather than the orientation
of the discontinuities at the cell interfaces. Alternatively, the scheme can be viewed as
a Finite-Volume scheme that collects fluxes around the edges of the median dual of each
vertex. This point of view simplifies the design of schemes that are monotonic, i.e. schemes
that do not create overshoots. Many such Fluctuation-Splitting schemes have been found
for scalar advection [22,23] and their design principles are now well understood.

The missing piece is a multidimensional splitting of the flux balance into scalar com-
ponents that can then be treated well with the multidimensional scalar schemes. Early
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attempts using simple wave models [24] produced results similar to those of other multi-
dimensional methods: a gain in accuracy paid for by a loss in robustness. It seemed that
it was unsolvably hard to choose from the infinite number of propagation directions in
the subsonic case.

1.1.5 Splitting the System of Euler Equations

Inspired by the treatment with SUPG schemes of the entire system of equations rather
than several scalar components [25], by insights gained from work on preconditioning on
the Euler equations [26] and by a re-evaluation of the residual distribution methods by
Ni and Hall [27,28], a new approach has been suggested for the steady Euler equations
by Ta’asan [29] and Roe [30] that splits the system in a hyperbolic part with decoupled
scalar advection equations that are best discretized with scalar advection schemes and an
elliptic part that is treated as a coupled system.

The approach has been successfully demonstrated recently [31-34], achieving very high
accuracy with good robustness. Remaining issues are the treatment of the stagnation
point where the preconditioning becomes singular and problems with the orthogonality
of the eigenvectors arise [35] as well as the surprisingly disappointing rate of convergence
of the scheme. It should be expected that the stiffness of the equations is completely
removed by the approach, however, it appears to converge significantly more slowly than
dimensionally split Finite-Volume schemes. Unfortunately, this phenomenon is not yet
understood.

1.2 Unstructured Grid Generation

Unstructured mesh methods are about to become the workhorse for CFD-calculations.
Although major automation efforts are still undertaken to reduce the user-time involved
when generating multiblocked structured meshes around complex geometries, the user
community has voted in favor of unstructured methods for low to moderate Reynolds
number flows and the leading software houses account for that.

The flexibility of unstructured grids dramatically reduces the time to generate a com-
putational mesh around a complex geometry from man-months for a structured multi-
blocked grid to CPU minutes for a tetrahedral unstructured grid. Besides the gains during
the mesh generation, even more significant gains during the calculation of the solution are
offered by solution-adaptive grid refinement. While adaptivity is intrinsic to the concept
of an unstructured mesh, it is a rather cumbersome procedure on structured meshes. An
extensive documentation of the state of the art as of 1993 can be found in [36].
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1.2.1 Hierarchical Grid Methods

Hierarchical methods based on quad-trees in two dimensions and on octrees in three
dimensions are a more recent innovation in grid technology for CFD. They were initially
developed for grid generation and simulation in structural mechanics [37] and recently
gained interest from the CFD community [38-41]. The interesting idea here is to use the
domain partitioning of a quadtree as a computational grid and to use the underlying tree
data-structure for communication between the cells and for adaptivity. Moreover, the grid-
lines are always orthogonal except for boundary intersections, leading to a favorable error
cancellation, at the price of a very rough tessellation of the boundaries. To circumvent the
problem of ‘cut-cells’, the vertices! near the boundaries can be warped to form nicer cells
and the entire tree can be triangulated, leading to relatively rough grids, however [37].
Alternatively, in order to remove the stiffness associated to the cut-cells, they can be
treated specially on the solver level [38].

1.2.2 The Advancing Front Method

In the triangular Advancing Front method (AFM) [42,43], an initial list of frontal edges
between boundary nodes is established that represents the boundaries of the domain. The
smallest edge from all fronts is taken as the base of a triangle to be formed. A third vertex
for a new triangle is either constructed or taken from the list of existing vertices in the
front, in accordance with parameters interpolated on a background mesh that the user
has to specify, such that the new triangle does not intersect any already existing ones.
The front is then updated and the process repeated until all fronts have collapsed, leaving
no gaps to be filled. The method is called being ‘greedy’, since any triangle formed is
never removed from the triangulation and the domain is eaten up by the front.

The two-dimensional meshes created by the AFM exhibit a very high degree of reg-
ularity after smoothing with a Laplacian filter, although the nodes generated might not
be connected in an optimal way. A connection that is optimal, in several senses, as will
be shown in section 5.2, can be guaranteed by using a Delaunay triangulation. The AFM
has seen widespread use in CFD, but more for a lack of alternative than for its relatively
poor performance in terms of CPU time or for its poor robustness.

1.2.3 Delaunay Refinement Methods

A more mathematical concept is the Delaunay triangulation [44-46] that prescribes a
unique connectivity between a given set of grid vertices: no circumcircle around three

'In the following the term vertex is adopted when referring to a grid-vertex. The distinction is made
since a vertex does not necessarily coincide with a node where the solution is located.
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vertices that form a triangle contains another vertex. This leads to various desirable
optimal characteristics that are briefly reviewed in section 5.1 and more extensively in [47].

The circumcircle criterion can be efficiently used as a mechanism for constructing the
Delaunay triangulation [48,49] and for improving it by recursively inserting new vertices
into triangles with undesirable shape or size. The general idea shared by all ‘Delaunay
refinement’ methods is to introduce a new vertex at the circumcenter of a non-desirable
cell and to retriangulate. This placement guarantees that no vertex is closer than the
circumradius of the bad cell from the new vertex. Once a suitable placement has been
found in this way, the Delaunay criterion takes care of the optimal connectivity. As the
new vertex is placed specifically within the circumcircle of a bad cell, this cell must be
retriangulated and its minimum angle will double (fig. 1.2).

Figure 1.2: Acute cell (thick lines) with a circumcircle and cell with twice the minimum
angle (dashed lines) that is created by the insertion of a new vertex at the
circumcenter.

Variants of this algorithm are Holmes and Snyder’s algorithm, [50], that targets un-
wanted cells on area and aspect ratio, and Chew’s algorithm [51] that targets circumradius.
Chew’s algorithm actually yields bounds for minimum and maximum angles, provided
that the boundary point spacing is within certain bounds, resulting in a triangulation
with uniform size.

Ruppert presented a more sophisticated algorithm [52] that introduces a new vertex
into the cell with the smallest angle «,,;, found in the triangulation. In the case that
the introduction of this vertex is to break a required boundary segment, a new vertex is
introduced midways on that segment. Ruppert can prove convergence of his algorithm if
all input angles are larger than 90° for any «a,,;, < 20° and finds convergence in practice
for up to 30°.

All three Delaunay refinement methods are successful in achieving good angular prop-
erties in the meshes produced. However, they fail badly in regularity, as compared to the
Advancing Front method. Also, the user has little control in selecting areas with high
mesh density where significant flow features are expected.
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1.3 Courses Set, Waters Charted

The following sections begin with a review of the material that is found at the starting
point of this work.

Chapter II presents a discussion on conservative, primitive and symmetric forms of
the Euler equations and their properties, leading to the preconditioned form of the Euler
equations used for the calculations in this thesis that splits the equations into elliptic
and hyperbolic parts. The similar splitting of Ta’asan [29] is presented for purposes of
illustration, but not evaluated.

Chapter III reviews the various space discretizations pertinent to multi-dimensional
advection, including the elliptic system and the time-discretizations employed.

Chapter 1V derives the FAS-Multigrid scheme that has been implemented, including
aspects of its application to hyperbolic equations and the choice of grid-transfer operators.

These discussions lead to the chapters V and VI where this thesis attempts to con-
tribute.

Chapter V begins with a short description of the Delaunay method including a discus-
sion on grid quality characteristics. This is followed by a detailed description of the novel
Frontal Delaunay method. It includes the boundary point discretization, the generation
of a background grid for mesh scale interpolation, the generation of the interior point
cloud, the generation of coarse vertex-nested grids for Multigrid and estimations on the
bounds of key grid-quality parameters.

Chapter VI presents a comprehensive convergence study with the Multigrid method
applied to Fluctuation-Splitting discretizations of scalar hyperbolic equations, the Cauchy-
Riemann equations and the Euler equations in the sub-critical and trans-critical regime
using the Hyperbolic-Elliptic splitting of [30]. The results are discussed and explanations
for the convergence behavior is sought.

Chapter VII gives a critical summary of the results with an outlook on paths yet to
be embarked upon.



Chapter 11

Manipulating the Euler Equations

“That thou mayst shake the superflux to them
and show the heavens more just.”

W. Shakespeare, ‘King Lear’, Act III, Sc. 4

“Wind tunnel experiments suffer from diffusion,
not appearing in the Euler flow model.”

E. van der Maarel, [53]

The Euler equations describe the inviscid flow of a compressible and non-heat-conducting
fluid. In two dimensions, the conservative form of the equations can be written as

U OF 0G

o ok oy 1)

with the vector of conserved variables U and the conservative fluxes F and G given by

p pu pv
2
u=| % 7 F—|rPvtr 7 G- p;w ‘ (2.2)
pv puv pue—+p

pE puH pvH
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The fluid density is denoted by p, the velocities in the z and y directions by v and wv,
respectively, and the static pressure by p. The total specific energy F is given by

Eze—l—%(uZ—l—UZ), (2.3)
where e stands for the specific internal energy. The total specific enthalpy H is given by
H:E+% (2.4)

In the following the gas is assumed to be perfect, thus
p=pRT (2.5)

with the gas constant R and the absolute temperature 7.

Ultimately, the steady Euler equations in conservation form 2.1 are to be solved,
since this form allows the weak solutions that occur in trans-critical flows. However,
in the course of the analysis other forms of the equations will be more convenient. The
explicit time-stepping that will be employed makes use of the time-derivative to march the
solution in time, although this time-derivative does not have to be physically meaningful.
The transient that is sought is the one that gives the fastest convergence to the steady
state.

The Euler equations in quasi-linear form using primitive variables V are

ov. .0V .0V
—a ~ A By (2.6)

with
p u p 0 0 v 0 p 0
| u ~ |0 u 0 1/p 5 |0 v 0 0
V= v |’ A= 0 0 w 0 |’ B = 00 v 1/p (2.7)
p 0 pu* 0 w 0 0 pv* v

In streamwise coordinates ¢, 7 and using symmetrizing variables Q [54] the quasi-linear
form of the symmetrized Euler equations is obtained:

0Q  ~0Q =~0Q
at_AaerBan. (2.8)
with
dp/pa u 0 0 0 00 ¢ O
. D . 0@ 0 0 - 0000
0Q = B A=l go0ao0l” B lcoo0 o0 (2.9)
dp — 2dp 00 0 a 0000

with the modulus of the flow speed u = v/u? + v%. Note that in streamwise coordinates
the normal velocity is zero: © = 0. However, the flow turning rate 9o is not.
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2.1 From the 1-D Scalar Equation to the 2-D Euler System

A plethora of scalar advection schemes has been designed in the past that satisfy various
constraints of optimality. In particular it can be shown that for the linear advection
equation

Ju du
—+a—=0 2.10
ot + oz ’ (2.10)
with the unknown u and the advection speed a, the least dissipative monotonic linear
three-point scheme is the first order Upwind scheme,

u; —— (1 — v)u; + vui_q, (2.11)
with the mesh spacing A, the time-step At and the CFL number v = ”‘TM In one space
dimension, monotonic Upwind schemes that are third order accurate in smooth regions
of the solution have been presented by Van Leer [55,56].

The extension of these scalar schemes to the 1-D Euler system has been done suc-
cessfully using various “Approximate Riemann solvers” based on Godunov’s method [4].
The most popular flux splittings are Van Leer’s Flux-Vector splitting [1], Osher’s split-
ting [2] and Roe’s Flux-Difference splitting [3]. However, the straightforward dimension-
by-dimension extension of the 1-D algorithm to higher dimensions leads to a loss in accu-
racy when resolving grid-oblique features like shear layers as shown in figure 1.1. What
is needed is a genuinely multidimensional interpretation of the flow phenomena by the
scheme.

Various attempts have been made to incorporate the flow direction into the Riemann-
problem that is solved across cell interfaces. Early work by Raithby [57] was met with
increasing interest [6,7]. While these modifications do improve the quality of first order
accurate solutions dramatically, the improvements over second-order accurate solutions
are meager. Moreover, controlling monotonicity is an unresolved issue with these methods.

Recognizing that a major obstacle in devising genuinely multidimensional Upwind
schemes are the jumps in the unknowns at the cell interfaces, various scalar advection
schemes that employ a continuous variation of the unknowns have been developed in the
past few years by Deconinck et al. and Roe et al. [23,24,33,34,58.,59] using the Fluctuation
splitting approach [18]. These schemes have little dissipation compared to dimensionally
split schemes for advection oblique to the grid lines. The basic first order scheme, the
N-scheme, can actually be shown to have the minimum dissipation necessary for being a
positive scheme [60] and is in this sense the extension of the 1-D Upwind scheme.

2.2 Diagonalizing the Euler Equations

However, applying scalar schemes requires the Euler system to be diagonalized into a
decoupled set of scalar equations. This is not possible for the Euler equations in general
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since the Jacobians A and B do not commute. Looking at the quasi-linear form of the
equations 2.1 and 2.6, one finds

ou ou Ju

o Ao TBay
ou 0U ou
A ot 0x A B@y

and after diagonalizing A='B as A = LA7!BR with the left and right eigenvectors L
and R

ou 90U ou
—A'—— ="~ Lt RAL—.
ot 0x + dy
ou JLU OLU
— -1 P
LA™'RL 5% I + A oy

Changing to characteristic variables 9W = LU, one obtains

OW  OW AL
= 2.
ot ox A dy (2.12)

—~LA'R

or in the steady state
XNVWi=0, i=14. (2.13)

In the case of the Euler equations the eigenvalues )_\)Z', and characteristic variables are most
easily obtained from the symmetrized form 2.8 to yield the following system of equations:

(0 + q0,)(dp — 2dp) = 0, (2.14)
invariance of entropy along a streamline,

(9 + q0.)(dp + pqdq) = 0, (2.15)

invariance of total enthalpy along a streamline, and

(9, + %as + %an)(ﬂap + pg?90) = 0 (2.16)
(0, + %as - %an)(@ap — pg?90) = 0 (2.17)

invariance of the acoustic characteristics along the Mach lines.
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The norm of the flow velocity is ¢ = vVu? 4+ v?%, the flow angle is § = v/uand § = VM? — 1.

While this treatment fully decouples the Euler system into four scalar equations for
supersonic flow, M > 1, the acoustic system becomes complex valued and remains coupled
in the subsonic case, M < 1.

Initial attempts at treating the subsonic Euler equations with scalar advection schemes
attempted to fully diagonalize the system which necessitates to pick a few specific direc-
tions from the infinite number of possible ones for the acoustic propagation. Various wave
models are presented and discussed in [34,61]. All of them suffered from a loss of accuracy
compared to the scalar case and/or from a lack of robustness.

2.3 Canonical Variables

Another splitting of the Euler system along similar ideas has been proposed by Ta’asan [29].

2 % 0 u 0
5 9 2 5 19
~5, 9% | “aena g || V|20 (2.18)
0 0 ‘ TpQ 0 S 0
0 0 0 pQ | LH 0
with
d P 2 N 9
5= 2 ((c —u )@J: — uvay) (2.19)
g _p 2 2, 0 9
5= ((c — v )ay — Uu@;{:) (2.20)
0 0

One finds the invariance along streamlines for total enthalpy and entropy and an elliptic
2 x 2 kernel. The formulation of the kernel however differs from the one in equations 2.16
and 2.17, which are formulated in terms of the pressure gradient dp and the flow turning
rate 0. The canonical subsystem 2.18 is formulated in terms of the divergence and the
vorticity and has a source term in the vorticity equation that reflects the production of
vorticity due to gradients in entropy and enthalpy as given by Crocco’s law.

2.4 'Windfalls of Local Preconditioning

In the wake of ongoing work on local preconditioning of the Euler equations [26,62], the
coincidence of characteristic decoupling and characteristic time-stepping led to the idea
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of applying the preconditioning matrix to the subsonic system and to treat the acous-
tic kernel as a coupled elliptic subsystem. This allows to treat the advective equations
with a suitable Upwind scheme and to treat the elliptic part with a more centered dis-
cretization. Provided that the centered scheme has an elliptic domain of dependence, the
unsatisfactory choice of propagation directions for acoustic quantities can be omitted.

Applying a local preconditioner to the time-derivative of 2.12, one finds

Ju ou B@_U

~ar - PG TBYy)
oU 0U ouU
A" 1Ip-1-77*% i -1p
AP ot 0x B@y
ouU oU ouU
B —1p-1 v _19% v
LA™'PT'RL o LRALay
—LATUT4R6“728“7+A8“< (2.22)

In order to achieve full decoupling of the system of equations, the matrix of the time
derivative in the supersonic case, LAT*P'R has to be diagonal. It can be shown [33,63]
that this condition uniquely defines a preconditioner which is the preconditioning matrix
of [26]. For the symmetrizing variables it is

M2 —XM? 0 0
_ X X
p_| @M m+1 001 (2.23)
x 0
0 0 01

with x = #/max(M, 1) and g = \/|M? — 1|. While the choice of preconditioner is no more
unique in the subsonic case, the preconditioner 2.23 still decouples into the 2 x 2 system of
elliptic equations that represent acoustic propagation and two scalar advection equations
for enthalpy and entropy. After transformation to characteristic variables 2.14-2.17, one

finds

xvt xv= 0 0 % 0 00
oW v + A —X A
_OW | xvT v 0 0| oW n 0 5 0.0 0W (2.24)
at 0 0 1 0] o¢ 0 0 0 0] dn
0 0 01 0 0 00

with vt = (M? —1+3%)/2p3* and v~ = (M* —1—3%)/23% The conservative flux balance
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using characteristic variables can thus be expressed as

w06 _
dxz Oy

(2.25)

which lends itself straightforwardly for explicit time-stepping or other forms of collective
updates of the unknowns.

The calculations in section 6.3 have been obtained using the preconditioned system
since it most readily can be put in conservative form. The singularity in the stagnation
point where the flow speed vanishes and the flow direction  becomes undefined might
make the canonical form shown in the previous section 2.3 a more robust choice that
has yet to be investigated more thoroughly. Ta’asan has shown impressive iso-enthalpic
results [29], but the application to general inviscid flows has not yet been demonstrated.






Chapter III

The Discretization

the wind is a Lady with
bright slender eyes (who

moves) at sunset
and who — touches — the
hills without any reason

(i have spoken with this

indubitable and green person “Are

you the wind?” “Yes” “Why do you touch the flowers
as if they were unalive, as

if they were ideas?” “because, sir

things which in my mind blossom will
stumble beneath a clumsiest disguise, appear
capable of fragility and indecision

— do not suppose these

without any reason and otherwise
roses and mountains

different from the i am who wanders

imminently across the renewed world”
to me said the) wind being a Lady

in a green

dress, who touches: the fields

(at sunset)

e. e. cummings

From the discussions in chapter II the need for two types of discretizations arises: a
scalar upstream-biased scheme that is monotonic and exhibits little diffusion to discretize
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the advection of entropy and enthalpy and a coupled scheme for the 2 x2 system that
has an elliptic domain of dependence. The added design goal of these schemes is the
independence of the updates from the orientation of the cell-interfaces in order to ensure
genuine multi-dimensionality.

The ‘Fluctuation-Splitting’ discretization leading to schemes that satisfy the afore-
mentioned constraints, has been proposed initially by Roe in [18]. Various 1-D and 2-D
scalar advection schemes have been derived [22] and the derivation of the ones used here
is briefly shown in sections 3.1 and 3.2.

The space discretization is of the ‘Cell-Vertex’ type where the data are stored at the
vertices of the grid and the solution varies linearly over each element. Flux-balances,
termed ‘fluctuations’, are evaluated over each element and distributed to the nodes. The
differences in the various Cell-Vertex schemes come about in the distribution of the fluc-
tuation to the nodes of the cell. The most prominent member of this class of schemes,
and also its most basic, is Jameson’s scheme [64] that is widely used for industrial appli-
cations. It mainly excels in its convergence properties. The more sophisticated ancestors
of Fluctuation-Splitting are the schemes of Ni [27] and Hall [28]. Both schemes attempt
to distribute the fluctuation along concepts of upwinding, however without diagonalizing
the Euler equations as is being done here.

3.1 One-dimensional Fluctuation-Splitting for Linear Advection
The Fluctuation-Splitting method assumes its data to vary continuously between nodes,
as in Finite-Element methods (fig. 3.1). Conveniently, the data variation is presented as

u

X X X X
i-1 i i+1

Figure 3.1: The data for one-dimensional Fluctuation-Splitting is assumed to vary linearly
between the nodal values.

a sum of the linear basis functions w;(z) (fig. 3.2). This leads to the variation of the data
as.

u(z) = ;wz(aj)uz (3.1)

To solve a linear scalar advection equation

Uy +au, =0 (3.2)
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Figure 3.2: The piecewise linear basis function w;(x) in one dimension.

with the unknown v and the advection speed a, the subscripts indicating derivatives, one
can integrate the equation for each cell

/ h updr = —a/ " uydr = a(u; — ujpr) = ¢i+%. (3.3)

2 b

to find the fluctuation ¢Z+1 in the cell formed by the nodes ¢ and 74+ 1. In order to
converge to the solution, the scheme sends a “signal”, “an action performed on the data
so as to bring it closer to equilibrium” [18]. In the framework of Fluctuation-Splitting the
advection equation is discretized for every cell as

liyiviyn e ligquipn + Atai+1,i+%¢i+% (3.5)

with the length [; = —( Tiy1 — ;1) that weighs each node. Considering the case of a > 0,
a natural choice to use in cell 7 + % is oy = 0, ;41 = 1, leading to the first order Upwind
Finite-Volume scheme:

u; — vui— + (1 — v)u,. (3.6)

with the CFL number v = "‘lAt. Thus, with little surprise this choice of distribution
coefficients recovers the scheme with the optimum amount of dissipation for retaining the
positivity of the scheme [60]. However, as clearly demonstrated in [60,65] and shown
in section 3.2, the difference in interpretation of the data leads to different schemes for
systems and/or higher dimensions.
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3.2 Two-dimensional Fluctuation-Splitting for Linear Advec-
tion

The simplest two-dimensional advection problem to consider is the linear advection equa-

tion

u+a-Vu=0 (3.7)

where a = (a,b)" = const. in R®. The integral of u; over an element T is

//utd:fdy = — //a-Vud.rdy = f uadn = ¢r (3.8)
T T aT

with the boundary of the element 9T and the inward normal n. This is the definition of
the fluctuation on the element ¢r.

As in the one-dimensional case, the data u are assumed to vary linearly over each
element. The unknown can be expressed as a sum of the two-dimensional linear basis-
functions, leading to the variation of the data as shown in figure 3.3.

Figure 3.3: The piecewise linear basis function w;(x,y) in two dimensions, aka. the ‘tent’-
function.

u(z,y) = Z:wi(;r:,y)ui. (3.9)

The fluctuation ¢ can be thus be discretized using the trapezoidal rule as

1 1 1
or = §(U1 + uz)a-ns + 5(“2 + uz)a-n; + 5(“3 +u1)a-ny (3.10)
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where n; is the scaled inward normal to the side ¢, opposite the node ¢. Since the sides
of the triangle form a closed loop, 3" n; = 0, equation 3.10 can be rearranged to find (the
exercise being left to the reader)

1 1 1 °
¢T = —§(u1)a-n1 — §(U2)a'n2 - §(U3)a-n3 = - Zklul (311)
=1
with
1
k; = §a-ni. (3.12)

The following updates are performed at every time step:

S;u; — S;u; + Zai,TAt¢T VT D1. (313)
T

The area S; weighing each node is one third of the area of all triangles that are formed
with node ¢ (fig. 3.4). Using eqgs. 3.11 and 3.13 the following update formulae for one

Figure 3.4: Median dual around node ¢ with the surface 5;.

triangle T are obtained:

Slul — Slul - OzLTAt (klul —|— k‘gUg —|— k‘gUg) —|— TFOT, (314)
SQUQ — SQUQ - OQJ“At (k1u1 —|— k2u2 —|— ngg) —|— TFOT, (315)
SgUg — SgUg - Oz37TAt (klul —|— k‘gUg —|— k‘gUg) —|— TFOT (316)

The terms that arise from the contribution of other triangles, TFOT', will be omitted in
the following as every element will be treated as self-contained.

3.2.1 Three Design Criteria for 2-D Advection Schemes

Fluctuation-Splitting schemes attempt to achieve three design goals: conservation, posi-
tivity and linearity preservation.
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Conservation

A necessary criterion to be observed by any scheme applied to compressible flow is con-
servation. Writing out the sum of all updates to all nodes, one finds

N N N 3
ESZUZ — ZSZUZ - AtZZai.TEkjuj (317)
=1 =1 7=1

=1 T

and after rearranging the summation operators

N N N 3
ZSZUZ — ZSZUZ — AtZZaLTijuj. (318)
=1 =1 7=1

T =1

Provided that the sum of distribution coefficients adds to unity,
3
\V/T . Z ai,T = 1, (319)
i=1
the global sum simplifies to

N N
=1 =1 T

In the linear case discussed here, it is easily seen that the fluctuations ¢ telescope, since
they are defined by a curve integral around elements that do not overlap,

> ér = Z%Tuadn = ?éﬂ uadn, (3.21)
T T

and one is left with boundary terms only,

N N
1=1 =1 Ay

The conservative linearization of a nonlinear equation such that property 3.21 holds is
discussed in section 3.4.

Positivity

A second desirable aspect is monotonicity of the scheme. It is formulated here following
the concept of positivity of Spekreijse [66,67] improving over the TVD criterion proposed
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by Harten [68] that is too dissipative for higher dimensions. The scheme (3.13) can be
rewritten in the following form:

ultt =" cpul. (3.23)

A scheme is positive if the values at the new time level n + 1 are a convex combination of
the values at the old time level n, i.e. ¢ > 0. In this case, effectively a weighted average
is performed and the scheme observes a maximum principle. That is, u*" is bounded by
the minimum and maximum values of u} in its stencil. Condition 3.23 actually provides
a time-step constraint for all explicit schemes as shown in section 3.2.2.

Linearity Preservation

A third criterion, the property of preserving an exact steady state, whenever this solution
is linear in the spatial coordinates, is an obviously desirable property in the context of
linear Finite-Element methods. But this property ‘Linearity Preservation’ (LP) is not
automatically satisfied in the Fluctuation-Splitting context. A test whether a scheme
is LP can be performed by looking at how a triangle is treated that is in equilibrium,
i.e. with ¢ = 0. If the a; of equation 3.16 for this case remain finite, no updates to the
nodes of this element are sent and the exact solution is preserved. It can be shown [23]
that a scheme with the property LP is second order accurate in space on a regular grid
for linear advection.

Godunov’s Theorem

Godunov’s Theorem states the incompatibility between second order accuracy and
positivity for linear schemes where the coefficients are independent of the data, ¢, # f(u;).
It can be generalized to higher dimensions. Writing the scheme in the form (3.13), one
needs for linearity preservation either «; # f(u;) or «; = fB;i/¢r where j3; are linear
functions f(u;) that sum up to ¢7.

or = Z Qi = Z %qﬁT = Z B; (3.24)

For LP it is needed that the «; be bounded, 3; — 0 as ¢7 — 0.

Conditions on positivity for a scheme of the form (3.13) can be derived by looking first
at the case of a; # f(u;). For the coefficients of usz, us in (3.14) to be non-negative one
has to require either at; = 0 or both k9, k3 to have the same sign. Similarly, one needs for
u1, us to have non-negative coefficients in (3.15) az = 0 or both ki, k3 to have the same
sign. As not all k; can have the same sign for a # 0, a3 or ay need to vanish. Taking
each pair of eq. (3.14-3.16) in turn (the exercise being left to the reader), one finds that
a7 or az and ay or az have to vanish as well. Hence, only one «; can be non-zero which,
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without loss of generality, can be chosen to be ;. Following equation 3.19, it has to be
unity for conservation. Thus, the fluctuation is sent to one node,

Slul — Slul - At (k1u1 —|— k2u2 —|— ngg) . (325)

Positivity is achieved for S — ki At > 0 and ko, k3 < 0, which holds if At is chosen small
enough and if the sides 2 and 3 are outflow sides. The entire update then goes to the
downstream node 1 as can be seen in figure 3.5. As a; = 1, the coefficients are bounded
and the scheme has the property LP. Thus, for all triangles with one inflow side, sending
the entire update to the downstream node is positive and linearity preserving and only
this type of updating for these cases will be used, the one-target case.

In the two-target case (cf. fig. 3.5), a linear positive scheme, the N-scheme, can also
be derived with the condition «; = f(;/é7, as is shown in section 3.2.2. But as f; is
a linear function of u;, it may be non-zero for ¢r = 0, therefore this scheme does not
preserve linearity. A linear scheme can only be locally positive and linearity preserving

one-target triangle two-target triangle

Figure 3.5: Triangle with one inflow side and one updated outflow vertex (left) and a
triangle with two inflow sides and two updated outflow vertices (right).

if and only if all triangles have only one inflow side, which is impossible for flows with
zero-divergence. Thus, the two-dimensional extension of Godunov’s theorem states that
linear monotonic schemes can be at most first order accurate.

The various Fluctuation-Splitting schemes differ in how the update is distributed in
the cases with two inflow sides (figure 3.5) which is being discussed in the following
sections. The three scalar Upwind schemes that are used in the testcases are presented
in the following sections. A presentation of the Finite-Volume scheme formulated as
a Fluctuation-Splitting scheme, a viewpoint initially presented in [24], is included for
an illustration of genuine multidimensionality only. Accuracy studies for the different
schemes have been presented by the various contributors in [24,34,69] and are not be
repeated here.
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3.2.2 The N-Scheme: a Positive Linear Scheme that is not LP

In the case of a triangle with two inflow sides the fluctuation ¢ has to be split and sent
to the two downstream nodes which are chosen here to be 1 and 2. As has been proven,

2

1

Figure 3.6: The N-scheme can be viewed as two distributions resulting from splitting the
advection-vector along the inflow sides.

the scheme cannot be both positive and linearity preserving. For the N-scheme, positivity
is held onto and the property LP is relinquished. Hence, the scheme can be written in
the following form:

Slul — Slul - Atﬂl, (326)
SQUQ — SQUQ - Atﬁg, (327)

with the 3; from equation 3.24. It is shown in [60,70] that an optimal scheme is obtained,
in the sense of using a minimal stencil and allowing a maximum time-step while minimizing
the dissipation, if the advection speed is decomposed into two components along the sides
leading downstream to the nodes 1 and 2 as depicted in figure 3.6,

Slul — Slul — Atk‘l (u1 - U3) 5 (328)
SQUQ — SQUQ — Atkg (UQ - U3) . (329)
Local positivity is achieved for
. [St 52]
At < —, — .
< min [lﬁ T (3.30)

On a regular rectangular mesh with the diagonals drawn such as to minimize |k|, the
N-scheme is identical to the streamline Upwind scheme by Rice and Schnipke [71]. The
splitting of the advection speed along the sides of the triangle has also been done in the
Finite-Element context by Hughes et al. [72]. The name N-scheme has been coined by
D. Sidilkover [73] referring to its narrow stencil. In effect, with the diagonals properly
drawn, the N-scheme has a stencil of only three points. As expected the scheme is first-
order accurate [60,74].
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3.2.3 The Dimensionally Split First-Order Upwind Fluctuation-Splitting Scheme

In the one-dimensional case the alternate viewpoint of Fluctuation-Splitting leads to the
same first-order Upwind scheme that results from a Finite-Volume approach as has been
shown in 3.1. The first-order dimensionally split Upwind Finite-Volume scheme can be
cast into a fluctuation form in order to illuminate the differences that arise between the
concepts in higher dimensions. The basic Finite-Volume scheme is expressed as

Figure 3.7: Interpretation of the dimensionally split first-order Upwind Finite-Volume
scheme based on the vertices as a Fluctuation-Splitting distribution scheme.

Siuz- — SZUZ — At% vadn (331)
S;

Looking at one triangle T' (figure 3.7) formed with the vertex ¢« and two other vertices j, k
in permutation, the contributions of triangle 25k to the flux-integral of ¢ are

/AB vadn = uy, (a-ng) " 4 u; (a-ng)” (3.32)
/BO vadn = u; (a-n;)t 4+ u; (any)” (3.33)
with the standard Upwind definition of
(a-n)* = max (0,a-n), (a'n)” = min(0,a-n). (3.34)
Since positivity is achieved for (cf. equ. 3.31)

At < S
> rmax (0, k;)

and the scheme is linear, it can be at most first-order accurate. Rewriting the fluctuation
in terms of the interior normals n;; as shown in figure 3.7

(3.35)

n;, = 2 (1’12']' — I’Iki) = — (1’1]‘ + I’Ik) 5 (336)
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one obtains

br = —% (wia-n; + uja-n; + uga-ny) (3.37)
- _% ((wi — up)a-n; + (uj — ug)a-n;) (3.38)
= 5 (s~ wam; + (v — wi)amy) (3.39)
- _% ((up — wj)a-ng + (u; — uj)a-n;) (3.40)
_ _% Z»]«k(ui — u;)a(n; — ;) (3.41)

and after using interior normals

¢ = (u; —uj)a-(n;;) (3.42)

ijk

Comparing eqgs. 3.42 with 3.31 and 3.33, the distribution scheme that recovers the Finite-
Volume scheme is found to be

node z if a-n;; > 0

(ui — u]-)a-(nij) to { \V/{’L,], k} (343)

node y ifa'n;; <0

From this it is obvious that the fluctuation is always distributed to two vertices. The one-
target case that is positive and linearity preserving is not recovered by the dimensionally
split scheme which explains the larger dissipation compared to the optimal N-scheme.

3.2.4 The LDA-Scheme, a Non-Positive Scheme with the Property LP

Rather than losing the property LP and retaining positivity as with the N-scheme, one
can also seek schemes of higher order which do not obey a maximum principle. There is
a wealth of schemes in this class ranging from Upwind schemes, like the Low Diffusion
scheme A (LDA), which is discussed below, and its variation LDB, to central differencing
schemes like Lax-Wendroff type schemes or Petrov-Galerkin Finite-Element schemes.

The LDA-scheme is obtained by splitting the fluctuation according to the two areas
when the triangle is dissected along the advection vector as given in figure 3.8. Let point
4 be the intersection of the advection vector drawn through the Upwind node 3 and the
downstream face 3 between nodes 1 and 2. The «; are then given as

area342  length4?2 kq ky
_ _ =—— ; ay=-—— (3.44)
areal23  lengthl2 ks ks
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1

Figure 3.8: In the LDA-scheme the residual is split according to the areas cut by the
advection vector.

which leads to the scheme

ki ks ki
— At — - — 4
Siug «—Siju; — A lkl Tk (uy —us) + 1 (uy — us) (3.45)
S S At [ k3 ( )+ 7]{:1]{:2 ( )] (3.46)
Uy ——Souy — Uy — U Uy —u .
2 2 ky + ko ? ° k1 + ko ! °

Linear schemes of the type o; # f(u;) have some very interesting properties if used
on a regular mesh like the one given in figure 3.9. Three of the six contributing cells are

Figure 3.9: Regular mesh of triangles meeting at vertex 1.

cells with one inflow side and the other three are two-inflow side triangles. As the «; are
independent of u;, they are constant for the three triangles of the same type. Furthermore,
imposing the condition that 3~ «; = 1 for each triangle, four different «; can be chosen for
the scheme. Let these be ay, as for for the type with one-inflow side and a4, as for the
type with two-inflow sides.. The most general cubic polynomial that satisfies the steady
state is

u(z,y) = e(br — ay) + f(bx — ay)* + g(bx — ay)? (3.47)
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Assembling the contributions from each triangle with a node spacing of 2~ = 2 to a Finite-
Difference scheme yields the update to node 1 as:

[ 1
g—; e (CYS — 7 —I— Q4 — g) ba3 -I— (348)
(a1 — ay — 204 — a5 + 1) b*a® + (3.49)
2
(Ozg + g4 — g) bBCL. (350)

As all terms in e and f vanish, an exact quadratic solution is preserved. Thus, any scheme
with «a; independent of the data wu; is at least second order accurate in the steady state
on a regular mesh.

Considering the case where the diagonals are aligned with the flowfield b6 > a > 0, the
three triangles below a diagonal are single target cases, the ones above the diagonals are
two target cases. The upwind philosophy requires that ay = a3 =ag =0, a; =1 and
a4 + as = 1. Note that with this choice the stencil for node 1 consists only of five nodes.
For 3, to vanish, it is needed that

2 la . 1 Ta
au=g-gy ; a5:§—|—§3 (3.51)
This unique third order accurate distribution scheme, however, is not C°-continuous as
can be seen for vanishing a, which in practice would lead do undesirable convergence
properties. Note that there is a unique second order scheme using a minimum stencil of
four nodes [60]. Hence, the five node-stencil for the Low-Diffusion schemes is the minimum
required for a class of second order schemes.

3.2.5 The PSI-Scheme: another Ponlinear Positive Scheme that is LP

As in one-dimensional TVD Finite-Volume schemes, nonlinear schemes have to be resorted
to in order to obtain positivity and linearity preservation at the same time.

The basic idea of non-linear Fluctuation-Splitting schemes is the fact that any com-
ponent Aat can be added normal to Vu to the advection speed a without changing the
differential equation (fig. 3.10) since

(a + )\aL) Vu=a-Vu+at-Vu=a Vu. (3.52)

But the scheme is affected as the distribution of the fluctuation changes.

Three variations with a slightly different optimization exist, the ‘level-scheme’, the
NN-scheme [23] and the PSI-scheme, their results and convergence being almost identical.
Only the coefficients of the PSI-scheme however depend continuously on the data and on
the advection speed, which is important for robust convergence.
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Figure 3.10: Any component Aal can be added normal to the gradient of the solution
Vu without changing the residual. A specific choice is to align the advection
speed a™ with the gradient to obtain the frontal wave speed.

Figure 3.11: The PSI-scheme is one-target if the level-line of the solution does intersect
the outflow side, otherwise it is two-target and reverts to the N-scheme.

The PSI-scheme is named for its ‘positive streamwise invariance’ [24]. In the two-target
case chosen on a, the PSI-scheme considers advection with the speed ¢™ that is aligned
with the gradient Vu, resulting in a one-target scheme as long as Vu drawn through the
upstream vertex does not intersect the outflow side. Otherwise the PSI scheme reverts to
the N-scheme:

kq (U1 - Uo)
At .
Siuy «—Stuq + o (10 — o) + F2 (13 — o) or (3.53)
k _
SQUQ (—SQUQ —|— 2 (UZ UO) At¢T (354)

k1 (w1 — uo) + k2 (uz — uo)

The loss of accuracy due to choosing a first order scheme in this case is barely per-
ceptible in the solutions since at convergence the gradient and advection vectors become
normal and the scheme is one-target except in shocks. There, for the sake of monotonicity,
the accuracy has to be given up anyhow.

An alternative way of deriving a class of non-linear schemes has been presented by
Sidilkover [12] that leads to a very compact and elegant formulation. Recall the definition
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of the N-scheme in eqgs. 3.28 and 3.29:

Slul — Slul - Atkl (Ul - U3) = Slul - At¢1,
SQUQ — SQUQ - Atkg (UQ - U3) = SQUQ - At¢2

With a symmetric limiter function ¥ based on the ratio of the two residuals @),

() (3.55)

¢ 629(Q)

v(Q
620(Q) = 6 2,
Q
a limited contribution of the other residual can be added to the update in order to increase
the accuracy of the scheme,

Slul — Slul - At(¢1 —|— q}(Q)¢2), (357)
SQUQ — SQUQ - At(¢2 - \I;(Q)¢2), (358)

Q=

(3.56)

and using the symmetry of the limiter for the first equation,

Siuq — Sju; — At ( — %) k1(uq — us), (3.59)
SQUQ — SQUQ - At (1 - \I;(Q)) kQ(UQ - Ug). (360)

The conservation property is obvious from (3.57) and (3.58). Local positivity is given for
a choice of limiter function that satisfies

0<W(Q) <1, 0< Y9 (3.61)

Q

which is follows from (3.59) and (3.60). The condition for local positivity can be relaxed
if the contributions from all triangles to the node are considered. This ‘global positivity’
argument allows the use of compressive limiters [75], ¥(Q) < 2. Linearity preservation
(LP) implies that no update is sent if the fluctuation is zero:

p=¢1+d=0 &  d=—¢ & Q=1 (3.62)
Thus, LP is achieved for
U(l) =1. (3.63)
The PSI scheme is recovered if the limiter is chosen as the MinMod limiter

U(Q) = %(1 + sgn(r))min(r, 1). (3.64)

(The exercise of demonstration by computation is left to the reader, or to [34]).
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3.3 The Lax-Wendroff Scheme for an Elliptic System

The treatment of the elliptic subsystems in 2.18 and 2.22 requires a scheme with an omni-
directional domain of dependence, since there are no preferred directions to upwind along.
A central Galerkin-scheme that distributes equally to all vertices of a cell is marginally
stable. While it is suitable for equations with sufficient physical dissipation, it does not
exhibit enough dissipation for systems with discontinuous coefficients.

A simple isotropic way to add dissipation is the one chosen by Jameson [64] using
second and fourth order isotropic dissipation terms that are added to the Galerkin dis-
cretization. A more sophisticated treatment is the “Streamwise-Upwind-Petrov-Galerkin”
scheme proposed by Hughes, Johnson et al. [16,17,76], that adds dissipation in the stream-
wise direction only.

In the following a Lax-Wendroff-type scheme is derived by imposing the equivalent
partial differential equation:

~U;=A“— +B— 4+ (A~ +B—| (A= + B—

ou ou  wh 0 0 ou ou (3.65)
oz dy 2 oz dy oz dy | '

Thus, the added dissipation is scaled with the cell residual and behaves as a Laplacian.
Both decompositions of the Euler equations 2.22 and 2.18 reduce to a form of the
Cauchy-Riemann equations, thus

U:(Z), A:H _01] B:[?H, (3.66)

and

ou oU wh

-Uy=-A—+B—+ —(IU,, +1IU .
ou JdU  wh
-U,=A—+B—+ —V?U. 3.68
¢ p + ay + 5 ( )

Integrating the contribution from a triangle 7' to one of its forming vertices ¢ (figure 3.12),
one obtains

/UtdA: —/ (AU, + BU,)dA
Q Q
h
+%/ A (AU, + BU,) dy
Q

h
+ “’7/ B (AU, + BU,) dz (3.69)
Q
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k

Figure 3.12: The integral [ U; over € of the triangle T' contributes to vertex «.

and with mass-lumping of the time derivative this becomes

SiUm»:b;)TUt—l—— (/ Ady—/ Bda;)U (3.70)
AU, [.Sr  wh

AV (o A B U el

SE (3+2( )2>t (3.71)

or in terms of the distribution coeflicients

St wh
o, =I— + —(A,B
3 + 2 ( ) 2
St n n
== _c r Y 72
3 + 1 l n, —n, ] (3.72)

A different way of deriving this scheme is shown in [77-79] starting from a Lax-
Wendroff formulation. A second cell-based time-step v, is introduced that is equivalent to
the wh term in equation 3.72. Increasing this time-step compared to the nodal time-step
increases the dissipation. The stability limits for the time-steps are given by [78] as

vy, <5 and v, > U, (3.73)

The definition of v in cell T is chosen as

At
hi

v = with  h; = min|n!|, 7 =0,2] (3.74)
Although the dissipation does not introduce coupling in the supersonic regime for the
acoustic subsystem [34], the control over the dissipation is not optimal as opposed to the
one found in the Upwind schemes.
Application of Multigrid methods to the elliptic part favors schemes with strong damp-
ing of high frequency modes. The damping rates over the entire frequency spectrum for
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oLw

Figure 3.13: Contour plot of the error damping of the Lax-Wendroff scheme over the
entire frequency range for the CFL-number combination v. = 1,v, = .43,
taken from [33].

the above form of the Lax-Wendroff scheme has been analyzed in [33] and a plot of the
amplification rate is shown in figure 3.13 for a typical CFL-number combination.
The strongest damping is achieved for

2412 6v
=1 - ——"— d = —————. .
PE) == gl and =gy (3.75)
leading to v, — oo and v,v. — .4 with p(G) = .6. However, this analysis focusing on

the damping of errors disregards effects of advection of errors to the boundaries and then
out of the domain. In practice, the combination v. = 1,v, = .5 resulting in p(G) = .71
yields the best results when applied to the Cauchy-Riemann equations as will be seen in
section 6.2.

3.4 Conservative Linearization

In the preceding discussions the equations were assumed to be linear. In order to be
able to deal with nonlinear problems, a linearization has to be performed that remains
conservative, that is

6r=¢ Fin= [ V. Fdrdy (3.76)
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In the case of a scalar equation 3.7, this can be achieved efficiently by defining a linearized
advection speed

1
a= S—T//T adzdy (3.77)
which leads to

or = // —Vudzdy = aVu/ dxdy = SraVu (3.78)

In a very similar fashion, treating the system case requires to define linearized Jaco-

bians A, B such that the following holds:

®r = ¢ Fdn, — Gdn, = // (aF aG) dQ = Sy (Aa_U_|_Ba_U)
aT dy 0 Jy (3.79)
However the straightforward evaluation of the integral of the Jacobian
. 1
A= [[ Adea 3.80
5 [ Jp A drdy (3.80)

is too cumbersome for the Euler equations due to the nonlinear terms it contains. A
simpler procedure presented in [80] is obtained by using Roe’s parameter vector Z [3]

Z = /p(1,u,v, H)". (3.81)

With this choice the vector of conservative unknowns U and the conservative flux vectors

F and G are quadratic in Z, thus the Jacobians %, % and % are linear in Z and an

average gradient can be defined as

ST//VUdA—ST// M vda = ‘ZIZJZ

and similarly for VF and VG using the average parameter state
2, +7Z;+ 7
3

VZ (3.82)

7= (3.83)

This leads to the fluctuation expressed as

R IAC S SRR S o

:// (8F8Z8U 8G8Z8U)

9Z9U 0x | 9Z 90 Oy (3.85)
U _ou
_ S (Aa—x + Bg) (3.86)
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with the average Jacobians evaluated at the average parameter state Z

_ OF
A=70

g- ¢

o (3.87)

, .
Z Z

Aspects of linearization are extensively discussed in [34].

3.5 Time Discretization

The steady-state solution of the Fuler equations is sought here by applying pseudo-
time stepping concepts. The decoupling of the equations using the preconditioning ap-
proach 2.22 or the canonical form 2.18 demands two seemingly conflicting optimizations
from the time-stepping scheme employed. On the one hand a scheme with good advection
properties is needed for the advection-dominated part, namely the entropy and enthalpy
equations. Ideally, a space-marching scheme that traces out the characteristics is sought.
On the other hand, schemes that emphasize damping are required for the elliptic kernel,
especially when opting for Multigrid convergence acceleration. However, both the damp-
ing of errors and the advection of errors out of the domain work in common to reach
convergence. The analysis of the interaction of both processes has not been undertaken
as of 1995.

The trade-off between damping and advection can nicely be illustrated with the opti-
mal multistage schemes for explicit time-stepping [62,64,81]. The optimization is achieved
by matching the damping of the time stepping operator to the Fourier footprint of the
spatial operator, thus requiring a special set of multistage coefficients for each discretiza-
tion. The sum of these coefficients is lower than e.g. the same number of Forward-Euler
time-steps, thus reducing convection. Multistage time-stepping is widely used for pseudo-
time-stepping methods due to its simplicity and stability. The implementation can be
done efficiently by first collecting all residuals for all nodes and then performing the up-
date.

For purely elliptic problems in a Multigrid context, Gau3-Seidel relaxation outperforms
Jacobi relaxation by a factor of 2 [82] due to its superior smoothing characteristics and is
a standard iterative method for such problems. As numerical results for scalar equations
reveal (sec. 6.1), GauB-Seidel can also be an excellent time-stepping scheme for advection
equations when combined with an Upwind scheme. For the case of linear advection, a
space discretization with the N-scheme combined with Gaufl-Seidel time-stepping and a
downstream ordering of the cells results in a direct solver. Sidilkover presented results [12]
for the Euler equations using multidimensional schemes and Gauf-Seidel time-stepping
apparently resulting in fast convergence.

However, the implementation of Gauf-Seidel schemes in the context of a Cell-Vertex
discretization is less efficient than the Jacobi scheme. In order to calculate a conservative
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flux update at each node, the fluctuations of all the cells formed by that node have to be
collected. Since the computational cost of the method is dominated by the linearization
of the equations, their decomposition and the distribution of the cell residuals, all of
which are costs associated to the number of cells, one GauB-Seidel pass is three times
as expensive in CPU as one Forward-Fuler pass. Moreover, in general symmetric sweeps
have to be applied to equally treat all directions, resulting in a six-fold increase of the
work.

All of the convergence studies with GauB-Seidel and Forward-Euler schemes here are
to be taken as preliminary results since the nature and behavior of the coupling of the
parts of the non-linear system is not understood. Thus no optimization of any parameters
can be suggested and detailed CPU-time comparisons are omitted. Customarily Multigrid
work-units are defined for Gau-Seidel schemes as one symmetric sweep and for multistage
schemes as one iteration on the finest grid. This difference in notation is retained here,
although it leads to a discrepancy of 6:1 in terms of CPU-time between the schemes.






Chapter IV

Multigrid Convergence Acceleration

“Zeit ist ein Abgrund, Tausend Néichte tief.”

Klaus Kinski in Herzogs ‘Nosferatu’

A close look at figure 3.13 reveals the main motivation behind applying Multigrid methods
to relaxation problems: while the high frequencies are well damped and a relaxation
scheme is very effective for these modes, the low frequencies experience very little damping
from the scheme. This is characteristic of all relaxation methods.

The essence of the Multigrid concept is then to approximate the lower frequencies on a
coarser mesh where they become modes of a higher frequency and accessible to relaxation.
Figure 4.1 shows the basic principle. With the wavenumber £,0 < ;,k < ;3 NV on a grid of
level th with ;5 N vertices and the non-dimensional frequency 0,0 < ;;,0 = ; kn/;, N < 7,
a Fourier-mode is given by

Wg = sin ( " W]) = sin(;#07), 0<j7<ah. (4.1)
ih

Since smooth modes have to be resolved on a grid twice as coarse, a smooth mode is given
by #© < Z. Conversely, oscillatory modes are found with ;;© > Z. Figure 4.1 shows a
smooth level & solution with ;,© =~ % that remains smooth on level 24, 5,0 ~ Z. Further
coarsening of the solution increases the frequency to 4,0 = %’T, an oscillatory mode that
can be effectively damped with relaxation. Note that taking this oscillatory solution to
an even coarser grid level produces a low-frequency mode on the coarse grid that was
not present in the oscillatory fine grid solution. Moreover, since it is a low frequency

mode it can not effectively be damped with relaxation and is thus to be considered an
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Figure 4.1: The frequency of the same spatial variation of the data increases on a coarser
mesh.

expensive mode. This ‘aliasing’ has to be avoided, the solution on the finer grid has to
be smoothened in its high frequency contents before restricting it to a coarser mesh.

Once the solution is smoothed on the coarse mesh, the error is “prolongated” back to
the fine grid. Thus, the basic procedure is the following:

1. apply smoothing to the fine grid solution until the oscillatory modes have been
eliminated,

2. restrict the solution and the residual to the coarse grid,

3. apply smoothing to the coarse grid solution until the oscillatory modes have been
eliminated,

4. prolongate the error to the fine grid.

Naturally, the process is applied recursively through a couple of layers of coarser grids to
affect all frequency modes in the solution.
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4.1 The Full Approximation Storage Scheme

In the “Full Approximation Storage” scheme, (FAS), a full solution is stored on the coarser
grid levels. This allows the treatment of nonlinear problems with a Multigrid method,

x: + N(x) =1, (4.2)

with the vector of unknowns x, the nonlinear operator N and a source term f, here
augmented by a [pseudo-|time-derivative, but the steady state of the problem is sought:

N(x)=f (4.3)
The sign of the residual r is chosen as
x;=r1r=—(N(x)-f) (4.4)
At
o = gty VTT (4.5)
(4.6)

The discretization of equation 4.3 on the finest mesh, level &, yields
RN(px) = if (4.7)
which becomes with the definition of the error Ax of the current approximation x

hX :h)N( + hAX (4 )
hN(h)NC + hAX) = hf. (4 )

NeliNe o]

The residual of the current solution is
RN(hX) — pf = —pr. (4.10)
Subtracting equation 4.10 from equation 4.9 yields an expression for the residual
RN(rX + pAX) — 1N(pX) = 4r. (4.11)
This equation can be restricted to the coarser grid H = 2h to read
aNFI,x + gAx) — gN(FI,%) = IT',r. (4.12)

The restriction operator for the solution T and the one for the residual ZI’ don’t have
to be identical but they are chosen here to be the same as presented in section 4.3 and
the prime will be omitted in the following. Defining the coarse grid solution gx as

HX = {L_II h)N( + HAX (413)
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with the coarse grid correction yAx, the equation to be solved on the coarse grid is
obtained as

or in an explicit-time-stepping form

vA ~n n
nalt = gl + S (hHI oo+ aNGT,7) = nN (g ))
v At
=nri + (rfi — uN(u77)). (4.15)

After solving for the correction yAx on the coarse grid

aAx = gx — P1,x (4.16)
the correction can be “prolongated” to the fine grid by

WX — X+ P pAx (4.17)

Note that on convergence of the fine grid solution, the coarse grid error vanishes. That
is, the coarse grid solution is driven by the fine grid residual. With

hNh)N( = hf and R = 0
equation 4.14 becomes
aN(x) = uN (J1,%)

H ~
ax=,1,x,

M1, %x 4+ wAx = 1T, %,
thus
HAX =0.

Another point of view to be taken can be viewing the fine grid solution as a corrective
to the coarse grid solution. Starting from equation 4.14, one finds

HN(HX) = {;II}LI‘ + HN(;;II}LX)
= 2T = i NGX)) + # N, %)
= 3 Inf = TaNGX) + #N(T,%)
. (4.18)
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Thus, the source term of the coarse grid solution can be viewed as the restriction of
the fine grid source term gf™ and a corrective term that is the difference 7 between the
restriction of the fine grid residual and the coarse grid residual of the restriction of the
fine grid solution. On convergence of the fine grid solution, 7 changes the coarse grid
solution that it coincides with the fine grid solution. Solution adaptive processes might
be able to use 7 as an indicator of grid convergence of the solution.

In case the operator N is linear, N = L, one recovers the “correction scheme” (CS)
where only errors are dealt with on coarser grid levels. Equation 4.14 then simplifies to

HLHX:;;II}LI' +g L;;II}LX ( )

gL (HX — 1 hX) = Iur (4.20)

HL (iII KX + HAX — {L_II hX) = iII nr (421)
(4.22)

HLHAX = iII nr

In this form, the fact that the fine grid residual drives the coarse grid solution is most
evident.

4.2 Application of Multigrid to Hyperbolic Problems

The previous sections dealt with Multigrid as a concept for solving elliptic problems, that
is, the damping of errors was the primary aspect. In the context of the Euler equations
however, one is dealing with a system that in the steady state has both elliptic and
hyperbolic components.

Previous research has been undertaken to apply Multigrid methods straightforwardly
to this mixed problem or even a purely hyperbolic formulation of it. Ground-breaking
work has been presented by Jameson [83] and the concept has been carried further by
many others on structured [84,85] and unstructured grids [86-88].

The analysis of the Multigrid method applied to hyperbolic problems then focuses
more on effects of convection as shown in [89]: errors are advected faster on the coarser
grids to be absorbed by the boundaries. Naturally, while the errors are advected on the
grid, the high frequencies experience smoothing due to the space-discretization. This is
necessary to avoid aliasing.

Although Multigrid provides a worthwhile acceleration of the convergence in these
cases, the gains are disappointing for high speed flows: convergence rates for transonic
cases of .99 seem to be the accepted performance, compared to .25 in certain elliptic
cases. Various methods have been designed to overcome these deficiencies, e.g. by residual
over-weighting and defect-correction techniques [90] or by making the transfer operators

depend on the flow [91-94].
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The fundamental underlying problem however is that for the scalar advection problem
that one seeks to reduce the Euler-equations to, Multigrid is not an efficient concept. The
method of choice here is of the space-marching type.

Consider the problem of linear advection as presented in section 6.1: the most efficient
method that can be conceived has a cost of O(NN) associated to it, every node has to be
visited once. This is achieved by a space-marching method that orders the nodes according
to the streamwise direction and traces the characteristics from the upstream nodes in the
domain of dependence toward the node to be updated. During the process of convergence,
a front sweeps through the domain that separates the updated, final solution from the
initial solution.

A Multigrid method with linear transfer operators T and %1 distributes the correction
coming from the coarse grid centrally. That is, even a correctly updated fine grid node will
receive a coarse-grid-correction if another node in that is in the restriction stencil of the
contributing coarse grid node has an error. While this can be remedied with prolongation
operators that distribute only to downstream nodes, the solution convergence will not
improve since convergence on the fine grid is obtained only once the characteristics have
been traced through the grid in all fine-grid detail.

Naturally, if the problem is mixed hyperbolic-elliptic, accelerating the convergence of
the elliptic part might outweigh the the deceleration of the convergence of the hyperbolic
part. The Multigrid convergence process of the linear advection problem thus looks very
different compared to that of a single-grid method: the main features of the solution
appear after one or two cycles, since the solution then already is converged on the coarsest
grid, and a gradual sharpening of the features takes place until all details have been
resolved on the finest grid (cf. the results in section 6.1).

Using the decompositions presented in section 2.4 and section 2.3, the elliptic prob-
lem and the hyperbolic problem become decoupled. This offers the possibility to choose
different time and space-discretizations for the advective part and for the acoustic kernel.
In the sections 6.1 and 6.2 the suitability of the different time-stepping schemes for the
two types of partial differential equations is investigated.

4.3 Restriction and Prolongation Operators

For Cell-Vertex and Finite-Element methods, where the data vary continuously, using the
shape function coefficients w; is a straightforward choice for the restriction and prolonga-
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tion operators:

N
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This choice satisfies various properties:

e The operators are linear and can be precomputed and stored for efficiency.

The operators are central.

e The operators accomplish “full weighting”, i.e. the integral over the restricted quan-
tity is conserved during the transfer:

/ hI‘dHQ = / hI‘th (426)
HQ hQ

This is important for cases of highly varying coefficients in N which means also
highly varying r.

The operators are sufficiently accurate. Brandt [82] suggests the condition #m + %m > my
with the order of the restriction #m, the order of the prolongation %m and the or-
der my of the highest derivative of the nonlinear operator N. In the case of full

Welghtmg hHm ‘|‘}f_[ m =2 + 2> MEuler = 1.

e The restriction operator is the transpose of the prolongation. This condition derives
from effects of the aliasing phenomenon: Restricting oscillatory fine grid modes
creates smooth coarse grid modes. Conversely, smooth coarse grid modes introduce
oscillatory fine grid modes upon prolongation. The magnitude of these undesired
modes can be minimized by having both operators being their respective transposes.
This is called the Galerkin property. Briggs [95] gives a thorough discussion of the
problem. This condition is satisfied by design.

4.4 Cycling

With the transfer operators chosen, the cycling parameters remain to be varied.
The basic Multigrid cycle is the V-cycle (fig. 4.2). This cycle is found naturally when
viewing Multigrid as a mere convergence acceleration tool that is applied recursively for
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Figure 4.2: The Multigrid V cycle.

several levels of grids. Starting with the current finest-grid solution on level , v, anterior
or pre-iterations are performed to smoothen the high frequency content. The solution
and the residual are then restricted to the next coarser grid 2k, and again v, iterations
are applied to the 2h-problem with the right-hand-side restriction terms. This is repeated
recursively until the coarsest grid is reached where the problem is solved exactly, or
nearly so, with v, iterations. The error of that solution is prolongated to the next finer
grid where v, post-iterations are applied to smoothen the high frequencies aliased from
low-frequency error-components of the coarse grid. This is done recursively until the finest
grid is reached. A cycle with no post-iterations is called a ‘saw-tooth’ cycle.



Chapter V

Unstructured Triangular Grids

“Triangle man, triangle man,
triangle man hates particle man.
They have a fight.

Triangle wins. Triangle man.”

They might be Giants, ‘Particle man’.

“On a dit fort bien que, si les triangles se faisoient un dieu,
ils lui donneraient trois cotés.”

Montesquieu, ‘Lettres persanes’

5.1 The Delaunay Triangulation

The principle of the Delaunay triangulation (DT) [44-46] is beautifully simple, and, as will
be shown, amazingly powerful. Given a set of vertices the convex hull around the vertices
(imagine the vertices were nails in a board and a rubber band was wrapped around the
bunch of nails), the domain is tessellated such that each vertex is assigned the area that
is closer to the vertex than to any other vertex. This tessellation is called the Dirichlet
tessellation and the set of straight edges that delineate the borders between the different
tiles is the Voronoi diagram (fig. 5.1). The rule of connection is to connect those vertices
whose regions in the Dirichlet tessellation are adjacent or, in other terms, who share an
edge of the Voronoi diagram. These edges are part of the median of the edges in the
Delaunay triangulation, and thus for each triangle there exists a point where the three
edges of the Voronoi diagram intersect, the Voronoi vertex. This point is, by construction
the center of the circle that goes through the three forming vertices of the triangle.
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Figure 5.1: A set of vertices with the Dirichlet tessellation (shaded), the Voronoi diagram
(dashed lines), the circumcircles (dashed) and the Delaunay Triangulation

(solid lines).

5.2 Quality of the Delaunay Triangulation

Let a few geometric properties of the Delaunay triangulation from the literature be recalled
(Lee and Schachter give a nice review in [96]):

e the DT is unique, except for degenerate cases of more than three vertices that are
cocircular,

e the circumcircle around a triangle does not contain any other vertex,
o the DT is a Max-Min triangulation: it maximizes the minimum angles in the grid,

Among the many interesting mathematical properties (see e.g. Barth [47]) is the fact that
of all triangulations of a given point set with random data f; the Sobolev semi-norm

J ) (&) ] o .

is minimized on the Delaunay triangulation as shown by Rippa [97]. That is, in absence of
any known directionality of the data or expected solution, a DT will minimize the interpo-
lation error of linear Finite Elements. As to be expected, for strongly non-isotropic fields
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a modified triangulation with short sides aligned with the strongest second derivatives
and long sides normal to them achieves the optimum [98].

These results make it immediately clear that the Advancing Front method (AFM) [42]
cannot be optimal in the aforementioned sense as long as the triangulation contains non-
DT edges. A few general aspects of grid quality are being highlighted in the next sections.

5.2.1 Maximum Angle Condition

Probably the most classic grid quality criterion has been derived by Babuska and Aziz [99].
They show that the error of interpolation in a linear Finite Element method increases with
the maximum angle of the element

l'w = Ru [ (ry< Tla)h || w2y (5.2)

where u is the evolution, Ru is a linear projection on the element, || ||gr(ry are the usual
norms in Sobolev spaces, h is the largest edge length of the element and I'(«) is an
increasing finite function for 7/3 < o < x. This is to say that the maximum angle of the
cell should remain as small as possible.

5.2.2 Regularity

A very interesting result on the effects of regularity has been shown by Roe [100, 101].
By Finite Difference analysis applied to Cell Vertex methods, i.e. the Finite Element
type data representation of unknowns at the grid vertices and linear variation inbetween,
he showed that the residual fa-Vu is evaluated with second order accuracy only if the
elements connected to a vertex form a regular n-gon with n = 4 or n = 6. Regular means
here that the domain can be tiled with elements of the same shape. In practice this means
for triangulations that it is desirable to have six triangles around each vertex with parallel
bases on opposite triangles (fig. 5.2).

(17 o)

Figure 5.2: A few regular n-gons with n=4,6 that lead to a second order accurate residual
calculation with Cell-Vertex schemes.
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5.2.3 Size Variation

An intuitive feel for the effect of size variation can be derived by looking at a simple Finite
Difference formula, a forward difference of a first derivative.

Uij41 — Uy

- (5.3)

Uy =
This gradient approximation is second order accurate only at the midpoint z + %, hence,
one should find the cell interface for the flux calculation exactly at the midpoint between
both vertices 7,2+ 1. In graded fields variations in element size have to be accepted, but
the differences ought to be as small as possible.

5.3 The Frontal Delaunay Method

The Frontal Delaunay method (FroD) incorporates ideas from the frontal vertex placement
strategy of the Advancing Front method (AFM) [42] that achieve the regularity and the
smooth size variation that is desired into the Delaunay triangulation (DT), providing the
high quality point cloud with the optimal connectivity.

In FroD, vertices are generated and inserted in sets of one row at a time like a tree
that adds a ring every year as shown in figures 5.3 and 5.13. This special treatment of
each row distinguishes it from the independently developed method of Rebay [102] that
is otherwise very similar. After the insertion of each vertex, the DT is reestablished such
that there exists a valid DT that covers the entire domain at any stage of the algorithm.
However, the Delaunay criterion will not necessarily add the triangles between the new

| N \
new front implicit triangles

T
H
i
i

7

explicit triangles

\
old front

Figure 5.3: Explicit triangles (striped) and implicit triangles (squared) that are formed
along the old front and build the new front.

vertex and the frontal edge that they are projected from as proposed by the insertion
strategy (the explicit triangles in figure 5.3): if a triangle is not part of the DT, it will
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not be formed. Other triangles are formed that close the DT around the newly inserted
vertex (the implicit triangles in figure 5.3).

In order to make these implicit triangles well-behaved, a minimum distance between
vertices has to be imposed, say a certain fraction ah of the local mesh spacing h. This
prevents short edges leading to acute triangles and gives an upper cardinality bound to
the triangulation. The required distance is taken from a background grid that specifies
the mesh spacing at every location. For a symmetric definition of distance in this non-
Euclidean space, the mesh-spacing has to be interpolated at the midpoint between the
two points in question. In the case that a new vertex is conflicting with one of a previous
row, the new vertex is discarded. In the case that two vertices of the same row are too
close, they are merged. This merging makes FroD the only method currently that is not
“vertex-greedy”.

5.3.1 Generating the Delaunay Triangulation

Delaunay refinement methods insert new vertices recursively into a valid Delaunay trian-
gulation. Thus any method that generates the Delaunay triangulation incrementally is
suitable. Many such algorithms have been presented.

Bowyer’s algorithm [49] computes and modifies the Voronoi diagram, but is relatively
cumbersome to implement.

Another possible choice is Green and Sibson’s algorithm [103] or Lawson’s algorithm
[104] that inserts a new vertex into the containing triangle by connecting it to the three
forming vertices or onto an existing edge by connecting it to the four forming vertices of
the two triangles that share the edge. Newly created edges are necessarily DT, however
adjacent older ones might not and are swapped until the triangulation is again DT.

Watson’s algorithm [48] is frequently misquoted as being Bowyer’s, but is different and
more practical. It exploits the circumcircle criterion directly by finding the region that is
covered by all the triangles who contain in their circumcircles the new site that is to be
inserted. The cavity can be found by locating a first cell that contains the new vertex and
then marching from neighbor to neighbor. All cells of the cavity have to share an edge
since the cavity is convex due to the circumcircle criterion. This cavity is retriangulated
by removing all the triangles covering it and reconnecting the edges of the cavity with the
new vertex to a new valid DT (fig. 5.4). For its simplicity, this is the method that was
chosen for FroD. This choice leads to a data structure that stores for each triangle:

o the three forming vertices,
o the three neighboring triangles and

e the circumcenter and -radius.
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(a) (b) ()

Figure 5.4: Vertex insertion with Watson’s algorithm. Part (a) shows the valid Delaunay
triangulation with the new vertex that is contained in various circumcircles.
The cavity that has to be retriangulated is shown shaded in (b), (c¢) shows
the retriangulated cavity.

All recursive methods have to be started from an initial valid DT, say one or two
triangles that cover the entire domain (fig. 5.5(a)). The triangles outside the domain are

N

iy

W=

N

(a) (b)

Figure 5.5: The initial triangulation of the boundary vertices is inserted into a valid De-
launay triangulation of four vertices that covers the entire domain (a). The
final triangulation of the configuration (b) is shown in figure 5.15.
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removed at the end of the triangulation, be they outside the outer boundary or inside of
holes in the domain.

5.3.2 The Constrained Delaunay Triangulation

The geometric construction of the Delaunay triangulation does not distinguish between
boundary vertices and interior ones and thus does not respect the connectivity between
boundary vertices. However, for the purpose of generating computational grids, boundary
conformality is indispensable.

A way that ensures boundary conformality is the constrained Delaunay triangulation
(CDT). In the CDT, required edges between vertices are added to the set of vertices to
be triangulated. These edges truncate the circumcircles in such a way that a vertex that
lies on the other side of the edge with respect to the circumcenter is never contained in
the circumcircle, thus preventing the formation of an edge that would cross and obliterate
the required edge.

I

Figure 5.6: A regular triangulation that violates boundary conformality on the left, and

the equivalent constrained Delaunay triangulation with a required edge on the
right. The required edge blocks the visibility of the circumcircles across the
edge, so the two halves of the cavity to either side of the required edge can
be triangulated separately.

This is equivalent to finding the cavity that is formed by all cells sharing the edges that
cross the required edge, splitting the cavity along the required edge and by retriangulating
each part separately (fig. 5.6). Note that the optimal Delaunay properties presented in
section 5.2 do not necessarily hold for the CDT.

5.3.3 Searching the Delaunay Triangulation for the Containing Triangle

A frequent search problem that has to be dealt with efficiently in Delaunay refinement
methods is finding the cell that contains a certain point. In FroD this has to be done for
finding the first triangle of the cavity or for finding the element to interpolate on in the
background grid.

A very simple search strategy that does not depend on an overhead tree-structure can
be devised by walking on the mesh toward the target. E.g., consider using the cell-based
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data structure with given vertices and neighbors. Starting form a given cell, the current
position traverses to the neighbor that lies in the direction of the target, until it has
reached the cell that contains the target. The direction can be determined by calculating
the scalar product of the vector from the mid-side of each edge with the outward normal
on that edge (fig 5.7). Only in the cell that contains the target, all scalar products are
non-positive.

Figure 5.7: The scalar product search uses the scalar product of the outward edge normal
with the vector of the mid-side of the edge toward the target to determine in
which neighbor to proceed with the search.

Naturally, the average complexity of this method is O(\/N) with N vertices, which
is not good enough for searching large meshes. However, it is a very simple and efficient
algorithm if the search starts at a cell that is close to the target and/or if the size of the
mesh is small, as is typically the case for background meshes. A suitable application e.g. 1s
the check for the existence of the required boundary edges in the Delaunay triangulation.
As the check proceeds from one existing edge to the consecutive edge, an initial guess is
always in the vicinity and the search is O(1).

5.3.4 Searching the Voronoi Diagram for the Closest Vertex

A second search problem is finding the closest grid vertex to a given location. This is done
for the distance check of new vertices to be inserted. The dual of the DT, the Voronoi
diagram (VD) is a natural and most convenient tool to solve the closest-point-problem of
the distance check [105]. Every Voronoi vertex is equidistant to the three grid vertices that
form the triangle associated with the Voronoi vertex and the three tiles of the Dirichlet
tessellation, the Voronoi regions of the three vertices intersect with each other at the
Voronoi vertex. The grid vertex that is closest to the target is the one that contains it in
its Voronoi region. Similar to the walk procedure on the Delaunay triangulation, a walk
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Figure 5.8: Searching for the closest point can be done efficiently on the Voronoi diagram.
The bullets mark the grid vertices, the Voronoi vertices are marked with
dashed circles, the Voronoi diagram is drawn with dashed lines. The Voronoi
region (shaded) that contains the target (marked with a cross) is associated
to the closest vertex and can be found by walking on the Voronoi region.

can be done from one Voronoi vertex to the next one leading to the Voronoi region sought.
The search starts with an arbitrary grid-vertex and loops over the Voronoi vertices forming
the Voronoi region around that grid-vertex. The switch from one grid-vertex to the next
occurs when the target switches to the other side of the vector to the next Voronoi vertex,
the perimeter vector. In figure 5.8 the loop is executed counterclockwise and the target
is kept to the left. When the target switches to the right of the perimeter vector, the grid
vertex is switched to the one across the perimeter vector. The procedure is complete when
the loop can be executed completely while keeping the target to the left of the perimeter
vector.

5.3.5 The Distance Requirement for New Vertices

Checking a new vertex against the other vertices can be done efficiently by using the
underlying Voronoi diagram (cf. sec. 5.3.4), provided that the other vertices are part of the
current D'T. Thus, the new vertices of the current row are introduced into the structure,
even though they might have to be removed again during a subsequent collision with
another vertex of that row.

As a simplification of the distance check, the new vertex can be considered as properly
spaced if a disc with the radius of the required spacing is completely contained in the
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circumcircle of the containing triangle,
Teire > ah + |Xneu) - Xcirc|7 (54)

with the circumradius r;,., the distance tolerance a, the local spacing h and the locations
of the new vertex x,., and the circumcenter x.,.. Most of the new vertices satisfy the
spacing constraint via this condition. It in effect neglects the changes in spacing as h is
evaluated at X, ..

If the new vertex fails this test, the search on the Voronoi diagram for the closest
vertex is executed. If the distance to the nearest vertex is sufficient, the new vertex is
introduced into the structure. If the new vertex fails the test conflicting with a vertex
from a previous row, the new vertex is discarded. If it fails the test with a vertex on the
same row, the other vertex is extracted from the triangulation (cf. sec. 5.3.6), the vertices
are averaged and the averaged vertex is introduced. Since the extracted vertex was well
spaced and the new vertex was closest to the extracted one, the new vertex inbetween the
two locations is, as a simplification, can be assumed to be well spaced.

5.3.6 Extraction of a Vertex from the Delaunay Triangulation

Once the algorithm finds a pair of new vertices on the same row that are too close to
each other, as it will be the case when the front is coarsened as it propagates away from
the body, the vertex that has already been inserted into the DT has to be extracted and
the merged vertex introduced instead. The extraction works as the inverse analogue of
Watson’s algorithm [48].

1. find the cavity of cells that are formed with the vertex to be extracted,
2. eliminate the triangles of the cavity.

3. retriangulate the cavity in Delaunay.

The first two steps are straightforward, using e.g. the pointers to neighboring cells to find
the cavity. The tricky part is how to find the DT for the cavity, and how to do this in
such a way that the pointers to the neighbors are generated efficiently.

One possible way to accomplish this is to establish a list of the vertices around the
cavity with the neighboring cells that are formed with each pair of the vertices. Looking
at a simple 2D cavity (figs. 5.6 or 5.4), it is clear that there has to be at least one cell
of the cavity in the DT that is formed with three consecutive vertices on the border of
the cavity. This cell can be found by walking along the border and testing each possible
candidate for a triangle whether it is convex, i.e. inside the cavity and whether there are
no other vertices of the cavity in the circumcircle around it.

If the candidate is accepted, the triangle is formed, the pointers in its neighbors
updated and the cavity resized. By induction, the process can continue until one single
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edge is left. This edge, with the accompanying pointers to the neighbors across the edge,
is used to update the last two neighboring pointers.

5.3.7 Generation of the Boundary Point Distribution

The distribution of the boundary vertices is the single most important parameter of the
grid to be generated. Naturally, the boundary point density defines how fine the grid will
be, but also determines the smoothness of the grid near the boundaries where the grid
quality is most important. The effort spent on the distribution of the boundary vertices
must remain small, however.

The approach taken here is to define spline curves, however coarse or fine they may
be defined, and redistribute the vertices along each boundary segment according to in-
terpolated values of boundary point spacing. The user input for this procedure are the
boundary spline points that are usually taken from an archive of curves, are specified ana-
lytically or are taken from another grid and a few spacing interpolation stations (fig. 5.9).
Vertices are placed on the spline curve using a blended quadratic spline operation due to

t

Figure 5.9: Spline curve with four support points (crosses) and boundary point spacing
distribution specified by three interpolation stations (double-ended arrows).
The vertices (circles) are being put down starting from the beginning of the
curve using the local spacing at the last point. The jump in spacing at the
end is smoothened by backward Gauf}-Seidel relaxation.

Beier [106] that is based on the two spline points to the left and to the right of the interval
in question. The spacing is interpolated linearly between the user-specified stations at
the position of the last vertex in the curve. This leads to a jump in spacing at the end. A
backward-GauB-Seidel relaxation is then applied to evenly distribute the spacing over the
curve, all the while respecting the user-specified spacing distribution. The curve-length
t of each boundary vertex is updated such as to place the vertex between two neighbors
according to the ratio of spacings hii% interpolated at the centers of the two edges that
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The free choice of the number and value of interpolation stations makes the procedure
highly flexible. Adding a global scaling parameter then allows to vary the total number
of grid points at the touch of a scalar.

Note that the resulting boundary-vertex distribution is nor unique, nor symmetric for
a spacing distribution that is not constant. The local pointwise evaluation of the spacing
makes the relaxation process non-linear. As a simple example, consider a narrow, but
extreme dip in the spacing prescription. The minimum will only found and be taken
into consideration if the middle of an edge happens to fall on it. Two different curves
will result from the same non-constant spacing distribution if the initial placement of the
boundary vertices is started from either end.

5.3.8 Generation of the Background Mesh

A constrained Delaunay triangulation of all boundary vertices is computed as an initial
triangulation to begin the vertex generation process (figure 5.5). This triangulation pro-
vides at no extra cost a background mesh to interpolate a local value of desired distance
between vertices at any point. The spacing h is interpolated between the three nodal
values of the background triangle that contains the interpolation point. The spacing h
at the vertices of the background grid is computed as the average distance to its two
neighboring vertices on the boundary.

On grids with a strong spacing gradation, like e.g. grids used for airfoil calculations,
a monotonic variation is found between the fine spacing on interior boundaries and the
coarse spacing on a far-field boundary if the background triangle connects directly from
the interior to the far field boundary. But along concave contours it may happen that the
Delaunay criterion connects between finely spaced interior boundaries and the background
grid will specify an area with a very low spacing gradient that would produce a too fine
grid. Consistent with the philosophy of minimal user input, the algorithm introduces
the necessary vertices to break the unwanted connections. Unwanted connections can be
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Figure 5.10: The initial triangulation of the boundary vertices with iso-spacing contours
superimposed. The spacing exhibits an unwanted spike of fine spacing from
the finely discretized trailing edge of the main flap to the underside of the
main airfoil.

e.g. connections between components that the user has specified not to be connected or
connections between boundary vertices that are non consecutive.

The procedure will be to detect an illicit liaison and place a vertex at the circumcenter
of the badly connecting triangle. During a subsequent retriangulation most if not all
of the triangles exhibiting an unwanted connection will be broken, thus very few extra
vertices suffice. Due to its placement, the new vertex is equidistant from all ill-connected
boundaries. The spacing is extrapolated from the most finely discretized boundary using
some average spacing gradient of the initial triangulation,

X, S7|Vh]

Vh =
Zf\il ST

(5.6)

5.3.9 Placing New Vertices

Since the Delaunay methods are not “greedy”, Tanemura’s rising bubble algorithm being
the exception [107], it makes little sense to define a rigid front like in the AFM that
separates the triangulated from the untriangulated region. A frontal edge is much better
defined here as the interface between a badly shaped cell that is yet to be refined and an
acceptable or unrefinable cell.
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Figure 5.11: Grid (a) has been modified from figure 5.10 by disconnecting the main flap
from the main airfoil. Grid (b) has been modified by breaking all connections
between non-consecutive boundary vertices. Both modifications effectively

and automatically remove the spike of fine spacing.

The ratio of squared side-lengths is used to quantify element quality ¢,

min n;n; .
G = —", ¢ = min g; (5.7)
maxn;n;

This criterion not only identifies a bad triangle that is either acute or obtuse by evaluating
q < Qgodunov, 1t also identifies the shortest side with ¢; < ¢godunoy that might be a frontal
edge: a short edge in a cell with disparate edge lengths that is shared by a well shaped

or unrefinable cell.
For each frontal edge a new vertex is constructed on the median into the badly shaped

cell such that the distances between the new vertex and the two vertices forming the edge
approximate h, the isotropic length scale.

The length of the sides I; and I, opposite vertices 1 and 2 is approximated by 2/v/31
of the altitude [ as found in an equilateral triangle. Requiring that this approximated
side-length equals the desired spacing hy evaluated midway between vertex 3 and the
midpoint of the base M (figure 5.12), one finds

hs = %|X3—XM| = (% (x5 — xXpm) \_/'h—l—hM) (5.8)

where hps denotes the desired spacing at M, Vi is the local gradient of the background
spacing and x3,Xp; are the position vectors of vertex 3 and point M. As the new vertex
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Figure 5.12: Construction of the new vertex. The new vertex 3 is place on the median of
the frontal edge 1,2. The spacing is interpolated at the point 4.

is placed along the median, one can write
X3 — Xy = [—— = [n3. (5.9)

where nj is the unit normal on the frontal edge pointing towards the triangle to be refined.
The altitude for a triangle with counterclockwise sense is thus

| = 2y

2 1
 n,Vh
V3 o2

Note that in the given form the altitude of the explicit triangle is independent of the
length of the frontal edge. This conserves the thickness of the layer of cells introduced
even if the length of the faces varies strongly. A partial view of the grid with four rows is
shown in figure 5.13.

(5.10)

5.3.10 Summary of the Frontal Delaunay Algorithm

The essential vertex generation loop can be summarized in pseudo-code as:

do while new vertices are found
for each triangle in the grid
for each face of the triangle
if this face is frontal
find a vertex to form a triangle with the face.
end if

end for
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end for
for each new vertex
find the closest vertex in the mesh,
if the new vertex is properly spaced
introduce the vertex into the structure
else if the conflicting vertex is on a lower row
discard the new vertex,
else
extract the conflicting vertex from the grid,
merge it with the new vertex,
reintroduce the merged vertex.
end if
end for

end do
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Figure 5.13: View of the grid around a three element airfoil after four rows of vertices have
been inserted.The triangles outside the domain have been removed for better
visibility. Note the node merging in the second row on the upperside of the
airfoil that leads to a coarsening of the front. The thickness of the front is

preserved in the fourth row since the node-placement formula is independent
of the length of the frontal edge.

The number of operations necessary to introduce a vertex in the isotropic process is of
O(1) for the construction and of O(log N) for the distance check if a tree structure for the
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searches on the background mesh was used [108]. Hence, the cost of generating a mesh
with N vertices, O(N log N), is asymptotically optimal [105].

5.4 Examples

A generic three-element airfoil configuration is shown in figures 5.14 to 5.16. The regu-
larity of the grid is entirely due to the frontal insertion, no smoothing filter was applied.
The cell surface area varies very smoothly from the smallest cells at the trailing edges
and corners to the largest cells at the outer boundary with a ratio of nearly 2 x 10”. The
robustness and the smoothness of the algorithm can be seen in figures 5.15(b) and 5.16(a)
where different fronts coalesce between components and the smoothness and regularity of
the grid is barely affected.
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Figure 5.14: Full view of the grid around a three element airfoil.

The triangulation was started from 340 boundary vertices, 133 on the main airfoil, 75
on the vane flap, 104 on the main flap and 33 on the outer boundary. The triangulation of
the boundary vertices took .6 sec. on a DEC 5000 workstation. 8 background vertices were
inserted to disconnect the main airfoil and the main flap as shown in figure 5.11(a). 39
rows with 3257 interior vertices were inserted in 13 sec. Note that no tree data structure
was employed, as would be necessary to obtain optimal O(N log N) complexity.
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Figure 5.15: View of the grid around the wing section of a three element airfoil (a) and a
closeup of the region around the flaps. In this region the fronts emanating
from all three elements coalesce smoothly. No smoothing has been applied.

5.5 Laplacian Smoothing

The vertex placement strategy as summarized in section 5.3.10 is an entirely hyperbolic
procedure, with the exception of the vertex-merging in the most recent row. Naturally,
the Delaunay triangulation has a smoothing effect leading to the various optimal char-
acteristics. It is desirable, however, to improve the smoothness of the point cloud by
applying an elliptic procedure, such as Laplacian smoothing

X; «— X; + v,

Zjl zj: (X]‘ — Xi) \V/Z,] cT (511)
For the choice of the relaxation factor as v, = 1, the vertex x; is placed at the average
location of all neighboring vertices x;. The relaxation is done using a point-GauBl-Seidel-
update on the numeric order of the vertices. This accelerates the relaxation and simple
checks can guarantee that the new location is still in the cavity and no overlapping
triangles are created. A point-Jacobi-update cannot guarantee that since all vertices
are displaced simultaneously.

As shown in chapter IV, relaxation only affects the solution locally in an efficient way.
However, this is precisely a desired property in the context of mesh smoothing: the global
vertex distribution must not be affected by too much smoothing.

The grids for the three element airfoil configuration in figures 5.15(b) and 5.16(a) have
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Figure 5.16: View of the grid around the wing section of a three element airfoil around
the vane flap (a) and a closeup of the region around the trailing edge of the
main flaps (b). The trailing edge is triangulated smoothly indicating the
robustness of the algorithm, no smoothing has been applied.

been relaxed with five sweeps at vy, = .5. The improved grids are shown in figures 5.17,
the statistical quality analysis in section 5.7.

5.6 Vertex-Nested Coarsened Meshes for Multigrid Schemes

FroD, like any other frontal mesh generation method, can be modified to produce succes-
sively coarser meshes where all vertices of the coarser mesh are present in all finer meshes.
This vertex-nestedness is very advantageous in a Multi-Grid context since it dramatically
simplifies the transfer operations. Previous Multi-Grid algorithms on unstructured grids
either used non-nested sets of meshes [87] that require more costly transfer operations or
resorted to agglomeration methods [109] that impose special requirements on the solvers
used on the coarsened meshes due to the geometric complexity of the agglomerated ele-
ments.

Techniques to generate vertex-nested meshes from triangulations have been presented
by Guillard [110] and Richter [111]. Both methods do not employ the frontal character
of the mesh generation that the present method is designed for. The duplication of the
frontal vertex generation scheme on twice the scale produces element-nested meshes in
regions of regular triangulation.

The necessary steps to create a vertex-nested mesh on the next coarser level with FroD
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Figure 5.17: View of the grid around the wing section of a three element airfoil in the

flap region (a, compares to fig. 5.15(b)) and a closeup of the vane flap (b,
compares to fig. 5.16(a)). Laplacian smoothing has been applied.

are as follows:

1. Coarsen the boundaries by skipping every other vertex. If the number of boundary

vertices on a boundary segment including the endpoints is even, a pair of vertices
has to be skipped. In the current implementation that pair is selected that has the
lowest ratio of curve length of the three edges connected to the pair compared to
the average spacing of the two vertices adjacent to the pair.

Double the spacing values of the background grid.

Run a modified frontal process with the coarser set of boundary vertices: the dis-
tance check is replaced by selecting an appropriate vertex of the next finer grid and
warping the new vertex on the coarse level to that position and introducing it into
the coarse grid. An appropriate vertex on the fine gird is close to the proposed
location of the new vertex and has no neighboring vertex on the fine level that is
already member of the coarse grid. The vertices on the fine mesh are tested for their
suitability in the following order:

(a) the closest vertex,
(b) the three vertices that form the element that contains the new vertex,

(c) all neighboring vertices of the closest vertex.
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If no such vertex can be found, the new vertex is discarded.

A sequence of vertex-nested grids can be seen in figure 5.18 for the example of the
subsonic and transonic GAMM channel [112]. If the fine grid is regular, the coarse grid
constructs nested elements as can be observed with the grids of level 5 and 4 in figure 5.18.
Note that the method does not guarantee that all possible fine grid vertices are found by
the coarse grid frontal process. On very coarse configurations with high gradients it can
occur that a possible fine-grid vertex to warp upon is out of the range of search and the
coarse grid vertex is rejected. This however seems not to be a problem in practical cases.

5.7 Estimation of Angular Bounds for the Frontal Delaunay Al-
gorithm

As the generation and introduction of vertices in FroD is embedded in the rather rigorous
mathematical framework of the Delaunay triangulation, the algorithm can be analyzed
mathematically. Ruppert [52] gave an algorithm that guarantees a minimum angle, but
produces grids with too few triangles in the field to be suitable for flow calculations.
Chew [51] presented an algorithm that guarantees maximum angles of 120° but that
does not allow to specify a spacing gradation. Both methods produce meshes that are
much more irregular than the ones produced by Rebay’s method [102], the AFM [42] or
the present method. On the other hand, no derivation of angular bounds is known for
the more heuristic AFM. The smoothness of the grids created with the AFM relies on
aposteriori smoothing. For a vanishing spacing gradient, Rebay’s method [102] reverts to
Chew’s [51] and the same bounds apply.

In the following, angular bounds for FroD are derived, assuming that the triangulation
is Delaunay and that the gradient is constant. Thus, the analysis can fail in the vicinity
of boundaries and for configurations that cross edges of the background grid where the
spacing gradient exhibits a jump.

5.7.1 Upper Angular Bound

FroD will detect short edges in triangles that are considered too obtuse or too acute
and will construct a vertex on the median of that frontal edge in order to refine the
triangulation locally and to improve the grid. The new vertex is placed approximately
at a distance h from the two vertices that form the frontal edge (cf. sec. 5.3.7). The
introduction of the vertex is subject to a distance check: if the new vertex is located too
close to any existing vertex, it cannot be introduced and the refinement will not take
place. The vertex is too close if the distance to the closest vertex is lower than a tolerance
a times the local mesh spacing h that is interpolated at the midpoint of the two vertices
in question.
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In this way, as a worst case a triangle with non-desirable properties has to be considered
that cannot be refined because the local vertex density is already too high. Figure 5.19
shows the limit case: the obtuse triangle ABC with a circumcircle O of radius r. As
this triangle is DT, there is no other vertex of the triangulation in O and we can always
introduce the new vertex D if its spacing disc S with a radius ah around D is contained
in O. Consequently, the worst case occurs when the two short edges of the triangle ABC
have the minimum permissible length of ah. With a larger edge length r will increase
and the disc around D is included in O already at a smaller angle . Hence, given the
tolerance a, the maximum angle v can be calculated for VA = 0:

1 V3
~ = 2arctan (5— 45) , 8= o +1, (5.12)
The narrower limit is obtained for @ = 1 with v = 120°. However, this restrictive tolerance
will inhibit the insertion of D as D then is too close to C and B. The maximum angle
increases monotonically to 139° for a = .5 (fig. 5.21).

In the case of Vh # 0, the construction is executed numerically. All orientations of VA
are tested since the length of the edge CA, the placement of D and the shape of S depend
on the gradient. The deformed spacing disc S is traced out and tested for inclusion in
O. Three curves for various Vh/h are shown in figure 5.21. The curves are drawn for all
values a for which S does not contain B or C for any gradient.

5.7.2 Lower Angular Bound

Similarly, a lower angular bound can be derived when refining triangles with one short
edge BC opposite the acute angle 3 by inserting D, as depicted in figure 5.20. As long as
the circumcircle O is large enough to contain the spacing disc S around D, refinement of
the triangle ABC will always be possible. Again, as 3 is further increased, O will shrink
until the limiting case is reached where O and S become tangent. In this case one finds

for VA = 0:
1
3 = 2arctan —. 5.13
3 arctan 7 ( )

The smallest minimum angle is found for @ = 1 as # = 30° and decreases monotonically
to B = 21° for a = .5. The construction for VA # 0 is executed numerically as in the
obtuse case. The curves are given in figure 5.21.

5.7.3 Measured Angular Bounds

Maximum and minimum angles for two configurations have been measured for the three-
element airfoil and the finest resolution of the Gamm channel for various distance toler-
ances .D < a < .9. The number of vertices varies for the three-element airfoil between

2113 and 2927 and for the GAMM channel between 2566 and 3492.
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The background grid of the three-element airfoil (fig. 5.15) is very rough with a ratio of
the maximum spacing gradient to the minimum spacing of Vo, /i = 4.9/.034 = 144..
With this ratio, no useful distance tolerance a > .5 is found that keeps the spacing disc in-
side the circumcircle for all gradient directions. Even when assuming that most of the cells
have a gradient ratio of less than twice the average gradient, 2V h,,,/hmin, = .038/.034 =
1.1, the minimum angles observed fall below the expected minimum (fig. 5.21).

The background grid of the GAMM channel (fig. 5.18, the finer 3400 vertex grid was
measured) is much smoother, although the maximum gradient found in only one cell, is
still prohibitively large for a bound. However, virtually all of the cells in the background
grid are close to the average gradient ratio VA, /hmin = .058/.086 = .67 and the observed
minima and maxima for all a fall within the predicted bounds (fig. 5.21).

The validity of the proofs could be extended by smoothing the background grids: very
easily a procedure could be devised that detects edges with a strong variation of the
gradient and introduces vertices at the neighboring circumcircles to improve the quality
of the background grid. However, as will be seen in the next section, the actual grid
generation process seems very little concerned about these worst cases.

5.7.4 Distribution of angles, surface area ratios and vertex degrees

The analytical bounds for constant gradients suggest using a tolerance a as close to 1 as
possible. The results in figure 5.21 show the best values for a tolerance around a = .8.

However, distributions of the values for each cell over the entire grid can show the
grid quality better than the maximum or minimum values. As the figures 5.22 to 5.24
show, a narrow peak close to the optimum values is found for a rather liberal tolerance
a = .65 with a very small number of cells with excessive angles v > 90° or a surface area
ratio larger than 2. The surface area ratio plotted for each cell in figure 5.24 is defined
as the larger one of the ratio of the areas of each triangle compared to its neighbor’s and
the inverse of it. A more stringent tolerance of @ = .8 produces a broader variation with
a larger number of undesirable cells. As opposed to what the actual maximum values
from figure 5.21 suggest, any choice of .5 < a < .8 will produce a satisfactory grid. The
distribution of the vertex degrees in fig. 5.22 shows an extremely narrow peak at the
optimum value of 6 edges formed with each vertex. Very few vertices exhibit a lower or
higher vertex degree.

These narrow distributions are improved by applying a few sweeps of a Laplacian
filter. This filter also effectively removes the small peak in maximum angles around 90°
that appears when two vertices have been merged.
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5.8 Summary

A grid generation method has been invented that combines the regularity of frontal
vertex-generation schemes with the optimal connectivity of the Delaunay triangulation.
The method is robust and efficient and generates grids with minimum user input, such as
a boundary point distribution only.

A background grid for the interpolation of the grid spacing is derived automatically
from the spacing values implicitly defined with the boundary point distribution. Nodes
are placed in rows around frontal boundary segments and are averaged in each row to
achieve a smooth distribution when the mesh spacing increases as the front propagates.

The method will not fail but always produce a consistent grid, provided that the
prescription of the boundary points is consistent.

Upper and lower bounds for the angle in the triangulation can be shown under certain
simplifications and the statistical analysis of the grids shows a high quality of the grids
with very few elements approaching those bounds.

A new method has been designed to generate vertex-nested multi-level grids for Multi-
grid calculations. The generation algorithm exploits the mechanisms of frontal point
placement efficiently and can be adapted very easily to work with any frontal node gen-
eration scheme.
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level 5, 1643 cells

level 4, 381 cells, 23 %

level 3, 92 cells, 24 %

level 2, 19 cells, 20 %

level 1, 6 cells, 31 %

Figure 5.18: Multigrid levels 1-5 for the GAMM channel, 1643 vertices on the finest level.
The percentage figure on the right indicates the relative coarsening in cell
numbers from the next finer level.
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Figure 5.19: Obtuse triangle ABC with maximum angle «. The circumcircle O contains
the spacing disc S around the new vertex D.

Figure 5.20: Acute triangle ABC with minimum angle 3. The circumcircle O contains
the spacing disc S around the new vertex D.
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Figure 5.21: Upper and lower angular bounds for different Vi /h and measured maximum
and minimum angles of two configurations in function of the tolerance a.
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Figure 5.22: Distribution of minimum and maximum angles (a) and vertex degrees (b)
for the three airfoil configuration. Shown are distribution functions for the
distance tolerance a = .8, for ¢ = .65 and for ¢ = .65 with Laplacian
smoothing.
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Figure 5.23: Probability densities for minimum (a) and maximum angles (b) for various

a and with smoothing.
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Figure 5.24: Distribution function (a) and probability density (b) of the surface variation
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Chapter VI

Convergence Studies

“Qu’est-ce que c’est que cette sorcellerie? Comment échappez-vous
a mon pouvoir? Ne pensez pas que cela va continuer. Je trouverai
bien la cause de ce désordre. Il y doit avoir quelque chose de rouillé
dans le méchanisme et les enchainements subtils.”

Eugene lonesco, ‘Le roi se meurt’

6.1 One-Dimensional Problems

6.1.1 Linear Advection

The simplest testcase to consider as a one-dimensional hyperbolic problem is linear ad-
vection of an input profile with a constant advection speed a. Here a jump in the input
profile at the origin is chosen that is advected oblique to the grid lines. The input values
on the left inflow face + = 0 including the origin are set to u = 1, the lower inflow values
y = 0tou =0 (fig. 6.2). A sample Multigrid solution with four grid levels of regular
triangulation is given in figure 6.2 using the PSI scheme.

The inflow values are imposed at the inflow boundaries z,y = 0, no boundary condition
is specified at the outflow.

Time-stepping methods used are

e Forward-Euler time-stepping with CFL = 1. A work-unit for this time-stepping
scheme is equivalent to one relaxation on the finest grid.

e Multistage time-stepping with Catalano’s coefficients optimized for high-frequency
damping [81]. For purposes of demonstration a three stage scheme was chosen that
has coefficients optimized for a second order Upwind scheme that do not depend
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Figure 6.1: Linear advection of a shear oblique to the grid lines.

on the flow direction. The CFL numbers are v, = .28v, vy = .61lv, v3 = v = 1.1.
Catalano gives the damping rate as ¢ = .42. A work-unit for this time-stepping
scheme is equivalent to one relaxation stage on the finest grid.

o GauB-Seidel time-stepping. The nodes are ordered downstream according to their
distance to a tilted line passing through the origin with direction s = (—.01,1)7
for the linear advection case, and s = (1,—.01)7 for Burgers’ equation. All the
contributions of the cells formed by a specific node are calculated and the node is
updated. The sweeps are done symmetrically with a downstream pass followed by
an upstream pass. The work-unit for this time-stepping scheme is equivalent to one
symmetric sweep on the finest grid. Considering that the cost of relaxation is mainly
associated with the cells, one Gaufl-Seidel work-unit is six times as expensive as one
Forward-Fuler time-step in terms of CPU-time, since there are three nodes per cell
and two passes are executed.

The residual is taken as the Ly-norm of the scalar quantity that is being advected,
without normalization of any kind.

ogao(Res) = oy (- 3 (Res), (6.1

=1

The N-Scheme

Various time-stepping schemes are applied to the shear problem, spatially discretized
with the N-scheme in figure 6.3 on the 17x17 grid shown in figure 6.2. Using GauB-Seidel
time-stepping a direct solver is obtained in the single grid case. The 3-node stencil of the
N-scheme extends upstream only (cf. section 3.2.2). Thus, by updating in a streamwise
ordering, the domain of dependence of each node has been updated once it is reached.
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Naturally, adding multi-grid time-stepping to that does not affect the convergence
since after the first sweep the residuals on the finest grid have vanished. The associated
cost increases with the work done on the coarser levels. The optimal cycle parameters are
v, = 1 pre and v, = 0 post-iterations.

Forward-Fuler time-stepping on a single grid exhibits a classic hyperbolic convergence
pattern: the front that separates the updated from the initial solution marches through
the domain and exits without reflection from the outflow boundaries, resulting in a sud-
den drop in residual. Applying multigriding to this time-stepping scheme results in a
better initial convergence due to the faster wave propagation on the coarser grids. The
optimal cycle parameters for the N-scheme and Forward-Euler are v, =3 pre and v, =1
post-iterations. However, convergence to full accuracy is slowed due to the central trans-
fer operators, that in the prolongation step spill errors back upstream into the already

converged field (fig. 6.3).

The comparison of convergence histories on various grid sizes in figure 6.4 shows a
marked dependence on the grid size, none too surprising after the previous discussion:
advection of the solution front through the domain takes longer. However, the difference
between the multi grid and the single grid convergence reduces for the larger grids as the
speeding-up of waves on coarser grids becomes more pronounced on the larger domains.
Since the problem at hand is linear, the characteristics on the coarse grid are the same as
the characteristics on the fine grid, allowing the fine grid solution to fully benefit from the
fast convergence of the coarse grid solution. This is not the case for general non-linear
cases as will be seen in the following section with the nonlinear Burgers’ equation.

A last comparison for the N-scheme in figure 6.5 compares single stage Forward-Euler
time-stepping with multistage time-stepping. Catalano presented multistage coefficients
in [81] for various Upwind schemes that attempt to optimally dampen the high-frequencies
by proper selection of the stage coefficients. The set of coefficients as given in section 6.1.1
has been derived in [81] for the dimensionally split scalar third order Upwind scheme,
K = % and used by Paillere in [34]. The improved damping rate however is obtained at
the cost of reduced advection: the CFL-numbers are lower than the stability limit CFL=1
employed for Forward-Euler time-stepping. This is clearly demonstrated in figure 6.5.
While the four-level multi grid three-stage scheme using Catalano’s coefficients (C31v4)
now outperforms the single grid version using the same multistage scheme (C3lvl), it still
falls short of the performance of the single-grid Forward-Euler scheme (FEIv1). Moreover,
the three-stage Multigrid scheme (C31v4,6) is outperformed even by the Multigrid scheme
with Forward-Euler time-stepping (FEIv4,6). The benefits of the optimal damping aren’t
even achieved on the larger 65x65 grid. Advection remains the dominant factor in the
convergence process for scalar linear advection.
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The PSI-Scheme

For the PSI-scheme, Gauf-Seidel time-stepping no longer results in a direct solver
(fig. 6.6). The PSI-scheme uses a five-node stencil, not all of which are updated prior
to updating the central node. This is the price that has to be paid for second order accu-
racy, the unique second order scheme on a regular grid having a stencil of four nodes [60].
Monotonicity has to be bought at the price of adding an additional node to the sten-
cil. Applying Multigrid in conjunction with GauB-Seidel produces initial benefits, but
is detrimental in the latter stages of convergence. Forward-Fuler time-stepping doesn’t
benefit either from multgriding. The optimal cycle parameters are v, = 10 pre and v, = 1
post-iterations. Although the advection is linear, the scheme applied is non-linear and the
benefits realized in the case of the N-scheme cannot be duplicated. Similarly, the improve-
ment of Multigrid performance on larger grids as observed with the N-scheme (fig. 6.4) is
not found with the PSI-scheme (fig. 6.7): the single grid scheme always converges faster.
The fewer levels used, the better the performance even on the 65x65 grid (fig. 6.8).

The LDA-Scheme

Very similar results to the PSI-scheme are found when using the LDA-scheme with
Multigrid (fig. 6.9). In terms of work-units, slight benefits in convergence are realized
with Multigrid in the early stages of convergence, but due to the superior advection and
the proper domain of dependence, the single-grid in the end converges faster.
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Figure 6.2: Linear advection of a shear oblique to the grid, a = (1.,.25)T, using the PSI-

scheme. Shown are the four levels with 17x17 (a), 9x9 (b), 5x5 (c¢) and 3x3
nodes (d) respectively. Note that the coarse grid solutions telescope on the
fine grid solutions due to the right-hand-side forcing function.
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Figure 6.3: Convergence histories of the N-scheme for linear advection oblique to the grid,
a = (1.,.5)T, comparing Forward-Euler (FE) and GauB-Seidel (GS) time-

stepping on a single grid (Ivl) and on 4 grid levels (Iv4) with 3 pre and 1
post-iterations.
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Figure 6.4: Convergence histories of the N-scheme for linear advection oblique to the
grid, a = (1.,.5)T, comparing grid sizes 17x17, 33x33 and 65x65, respectively.

Forward-FEuler time-stepping on 4,5 and 6 grid levels with 3 pre and 1 post-
iterations is used.
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Figure 6.5: Forward-Euler and 3-stage multistage time-stepping with the N-scheme for
linear advection on a 17x17 node and a 65x65 node grid. Shown are conver-
gence histories for the single grid scheme (Iv1l, lines only) and the multi grid

scheme (1v4,5,6, lines with symbols).
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Figure 6.6: Convergence histories of the PSI-scheme on a 17x17 grid for linear advection
oblique to the grid lines, a = (1.,.5)7, using Forward-Euler (FE) and Gauf-

Seidel (GS) time-stepping on a single grid (Ivl) and on 4 Multigrid levels
(Iv4).
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Figure 6.7: Convergence histories of the PSI-scheme for linear advection oblique to the

grid, a = (1.,.5)7, using Forward-Euler time-stepping on a single grid and on
4,5,6 Multigrid levels on grid sizes 17x17, 33x33 and 65x65.
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Figure 6.8: Convergence histories of the PSI-scheme for linear advection oblique to the
grid, a = (1.,.5)7, using Forward-Euler time-stepping on a 65x65 grid com-
paring 1 to 6 Multigrid levels.
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Figure 6.9: Convergence histories of the LDA-scheme for linear advection oblique to the
grid, a = (1.,.5)T, using Forward-Euler (FE) and GaufB-Seidel (GS) time-
stepping on a single grid (Ivl) and on 4 grid levels (Iv4) with 4 pre and 1
post-iterations.
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6.1.2 Burgers’ Equation

As a second testcase for scalar advection, the nonlinear 2-D inviscid form of Burgers’
equation is considered

ou 9 u* Ou
T N T 2
ot + oz 2 i dy 0 (6:2)

ou 0Jf 0Og
— 4+ =4+ ==0 6.3
ot + Ox + dy (6:3)

The nonlinear advection speed is

az g L 097 7L, (6.4)

Jdu Jdu

On the unit square, the exact solution features a compression fan that focuses into an

1
y u=15 u=-5
U= 1.5-2x
1-2y
0
0 X 1

Figure 6.10: Solution for the inviscid Burgers’ equation with an oblique shock on the unit
square.

oblique shock for the following boundary conditions (fig. 6.10):

1.5 for x=0,
u=1< 1.5—2z for y=0,
—.5 for x=1.

No boundary condition is imposed at outflow, y = 1. A sample solution obtained with
the PSI-scheme on a 17x17 grid with four Multigrid levels is presented in figure 6.11.
The schemes applied to this testcase are the N-scheme, retained for its outstanding per-
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formance with GauB-Seidel time-stepping, and the PSI-scheme for its improved solution
accuracy.

Figure 6.12(a) shows that GaufB-Seidel time-stepping converges rapidly for both
schemes, but is not a direct solver with the N-scheme as it is in the linear case. Due
to the converging characteristics in the vicinity of the shock, the N-scheme has a stencil
that is larger than 3 nodes and not all nodes in the domain of dependence are updated
when ordering the nodes downstream. Moreover, the simple sweep pattern, sweeping lex-
icographically from left to right in the inner loop and from bottom to top in the outer,
biases the solution process toward the right-running characteristics. The backward sweep
that would treat the left-running characteristics is done against the time-like direction and
thus ineffective. This case clearly shows the limits for lexicographic Gauf}-Seidel sweeps
for general and complex flowfields. The single grid Gauf-Seidel convergence of the PSI
scheme is roughly 50% slower compared to the linear case.

As in the linear case, adding Multigrid to GauB-Seidel time-stepping does not affect
the convergence dramatically. While on the coarse 17 x 17 grid only the N-scheme with
GauB-Seidel and on the finer 65x65 grid all but the PSI-scheme with Forward-Euler time-
stepping benefit from the Multigrid scheme, the gains (or losses) are very small. In the
best case, the N-scheme on the fine grid with Gauf-Seidel converges twice as fast with
Multigrid, which is a far cry from the order of magnitude commonly seen with elliptic
problems.

However, the results present themselves somewhat differently (fig. 6.13)when not the
final fully converged solution, but just a very good approximation is sought. Such a case
could arise e.g. when a relatively educated guess for a linearization is needed. A relatively
good solution in terms of ‘plotting accuracy’ is obtained with after two Multigrid cycles.
Thus, in a scheme for a system with both hyperbolic and elliptic components it can make
sense to apply Multigrid to the hyperbolic parts.
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Figure 6.11: Oblique shock case for the inviscid Burgers’ equation. Shown are the four

due to the right-hand-side forcing function.
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Figure 6.12: Convergence plots for the PSI and N-schemes applied to Burgers’ oblique
shock problem on a 17x17 grid (a) and a 65x65 grid (b). The plots compare
GauB-Seidel time-stepping (GS, curves on the left) to Forward-Euler time-
stepping (FE, curves to the right). The single grid cases carry no symbol,
Multigrid cases were obtained with 4, resp. 6 levels and carry a symbol.
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Figure 6.13: Burgers’ equation solved with the PSI-scheme and GauB-Seidel time-stepping
after one (a) and two (b) Multigrid cycles with v, = v, = 1 and after work-

unit equivalent 2 (¢) and 5 (d) sweeps on a single grid.
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6.2 The Cauchy-Riemann Equations

Both ways of diagonalizing the Euler equations presented in sections 2.4 and 2.3, the van
Leer-Lee-Roe preconditioning and the canonical form, produce in the subsonic case a 2x2
system of coupled equations that is of the form of the Cauchy-Riemann equations. In
the case of van Leer-Lee-Roe preconditioning, the acoustic system is defined in terms of
the characteristic variables and can be transformed into the Cauchy-Riemann equations.
In case of the canonical splitting, the acoustic kernel actually does work in terms of the
velocity components and the Cauchy-Riemann equations are obtained for a vanishing
vorticity source term of enthalpy and entropy gradients.

In order to assess the convergence properties of the proposed Lax-Wendroff scheme
that treats the system, stagnation flow in a corner and the flow over a bump for the
Cauchy-Riemann equations are considered.

Writing the system for u = (u,v)7 in the following form,

@_u_l_[l O]a—u-l-l()l]a—u:(), (6.5)
at 0 —1 1| 0z L 0] dy
produces a hyperbolic system with real eigenvalues. For the unit square, analysis of the
eigenvectors yields the following characteristic boundary conditions:

u+v = const. for y =0,
v = const. for =z =1,

u—v = const. for y = and (6.6)
u = const. for z=0

Soft boundary conditions are imposed for the bump cases. For each boundary edge,

three ghost cells with vanishing thickness and three reflected or imposed boundary states
uP are calculated as shown in figure 6.14. At inflow, u = u.,, at outflow v = v, are
imposed as the boundary states uP. At a solid wall three reflected velocities are imposed,
uP = u, — 21|1r212|3, with u; being uy, u, and %(ul + uy), respectively. The resulting

k3

fluctuations evaluated over each ghostcell are distributed to the forming nodes of each cell
using the Lax-Wendroff scheme. The fictive area that enters the cell-time-step calculation
is set to nzns, which is the maximum allowable cell-time-step for the given nodal time-
steps of the forming nodes 1 and 2 (cf. equ. 3.74). Convergence is monitored as the
Ly-norm of the u-velocity component.

6.2.1 Stagnation Flow in a Corner

The flow in a stagnation corner has the exact solution
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Figure 6.14: Ghostcell geometry for weak boundary conditions for the Cauchy-Riemann
equations with three reflected states and three boundary ghost cells. The
triangulation is contiguous at the boundary.

It is solved here on the unit square 6.15. Note that although the flowfield exhibits van-
ishing speeds, the modulus of the characteristic speed remains unity for all directions.
The grids employed are the same regular triangulation as used for the scalar testcases in
section 6.1.

Forward-Fuler time-stepping, even when combined with Multigrid, converges disap-
pointingly slow for this testcase. Using the optimal cycling parameters of v, = 10 pre
and v, = 1 post-iterations, the convergence rate falls way short of the rate of .7'" & .02
per cycle predicted by local analysis (cf. sec. 3.3). Moreover, the Multigrid convergence
rate is highly grid dependent and does not improve over the single grid convergence rate.
Looking at the residual patterns, washboard modes that are aligned with the lower-left

1
N
N
y
=
=
0
0 X 1

Figure 6.15: Stagnation flow in a corner with the Cauchy-Riemann equations.
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Figure 6.16: Convergence of the Lax-Wendroff-scheme for the stagnation corner in the
unit square with 17x17, 33x33 and 65x65 nodes. The plots compare Gauf-
Seidel time-stepping (GS, curves on the left) to Forward-Euler time-stepping

(FE, curves to the right). The single grid cases carry no symbol, Multigrid
cases were obtained with 4, 5, resp. 6 levels and carry a symbol.

to upper-right diagonal can be identified and that are not damped by the Lax-Wendroff
scheme with Forward-Euler time-stepping on this configuration.

GauB-Seidel time-stepping applied to the stagnation corner 6.16 produces a conver-
gence rate of 0 = .3 with the optimal cycle parameters of v, = 1 pre and v, = 0
post-iterations, thus improving over the rate predicted for Forward Euler. The conver-
gence rate is virtually grid-independent. The rate even exceeds the convergence rate of
a staggered grid formulation for the Cauchy-Riemann equations given in [82] of o = .5
for lexicographic ordering. This indicates that the enhanced damping of errors by the
Multigrid scheme cooperates favorably with the advection of errors by the Lax-Wendroff
scheme.

6.2.2 Channel Flow with a Circular Bump

The geometry of the GAMM channel bump [112] is shown in figure 6.21. The bump
height for the Cauchy-Riemann testcases was chosen as .014. A sample set of Multigrid-
levels is shown in figure 5.18. The coarsening ratio of cells between adjacent Multigrid
levels, ideally 25 %, is slightly exceeded for the initial grids, since the coarsening algorithm
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Figure 6.17: Convergence of the Lax-Wendroff-scheme using GauB-Seidel time-stepping
for the stagnation corner in the unit square with 17x17, 33x33 and 65x65
nodes. Multigrid cases were obtained with 4, 5, resp. 6 levels and carry a
symbol.

always chooses to over-coarsen a boundary segment with an even number of boundary
nodes (cf. sec. 5.6). For the coarsest level 1 the rate drops as some boundary segments do
not allow further coarsening. This effect is even more pronounced on the coarsened grids
below the the 851 node grid for the same configuration that is used in the calculations

for figure 6.19.

Contours of total velocity of the solution on the finest level of the 1643 node grid are
given in figure 6.18.

The spurious mode that prevented fast convergence on the regular unit-square grid
with aligned diagonal is not present on the isotropic grids created with FroD (cf. chap-
ter V). The convergence rate with the optimal cycle parameters v, = 8 pre and v, = 1
post-iterations, is found to be o, pg = .35 per cycle, which should be achieved with only
three iterations of the Lax-Wendroff scheme at o = .7.

GauB-Seidel time-stepping converges roughly three times as fast, producing a conver-
gence rate of o, s = .57 per cycle. Since in terms of CPU-time one GauBl-Seidel work-unit
equals roughly six Forward-Euler work-units, the total cost is slightly in favor of Forward-
Euler time-stepping with a total of nine iterations per level, 0. ¢s-6/9 = .38 > o, pg. The
reduction in convergence rate from the stagnation case of nearly 50% has to be attributed
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Figure 6.18: Solution for the GAMM-channel using the Cauchy-Riemann equations on a
1643 node grid. Shown are isolines of total velocity.
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Figure 6.19: Convergence of the Lax-Wendroff-scheme for the GAMM channel.

to the irregularity of the unstructured grid: the coarsened cells do not telescope on fine
grid cells as they do in the regular grids (figs. 6.2 and 5.18).

A look at the dependence of the Multigrid convergence rate on the grid size shows the
interesting fact that the finest grid with 3351 nodes actually converges fastest in terms of
work-units. This is due to the fact that the finer grid maintains a more optimal coarsening
ratio throughout its levels and thus the Multigrid scheme 1s more efficient.

Although tremendous acceleration with Multigrid is achieved for the Lax-Wendroff
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applied to the Cauchy-Riemann equations, the results still fall short of simple staggered-
grid schemes as presented in [82]. A better formulation than the arbitrary choice than
the one of equation 6.5 that relates u; to the divergence and v; to the curl of the velocity
field might be found.

However, when compared to convergence rates found in state-of-the-art dimensionally
split Upwind schemes the convergence with the Lax-Wendroff scheme is excellent. Were
it possible to extend these convergence rates to the Euler system, a vast improvement
could be achieved.
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6.3 The Euler Equations

Solving the subsonic and transonic Fuler equations accurately and efficiently is the prime
objective of this work. It has been shown that a Fluctuation-Splitting space discretization
(chap. III) used with the hyperbolic-elliptic spitting (sec. 2.4) yields a very accurate
solution with good robustness [31,32]. However, their results exhibit a strikingly slow
convergence of such schemes, and a Fourier analysis is yet to be done. A likely hypothesis
is that the elliptic part is responsible for the slower convergence of the scheme with
hyperbolic-elliptic splitting since it is the one modeled differently from purely hyperbolic
Finite-Volume Euler schemes. In this section Multigrid will be applied to the split system,
most importantly to treat the elliptic system.

At first glance, recalling the poor results on the performance of Multigrid with hyper-
bolic equations of section 6.1.2, a scheme that treats the hyperbolic part with Forward-
Euler time-stepping scalar advection schemes and that treats the elliptic part with Multi-
grid seems very attractive. Such an approach has been taken by Ta’asan [113] (cf. sec. 2.3),
first updating enthalpy and entropy and then solving the acoustic elliptic system. In a
Cell-Vertex framework however, the cost of one iteration will roughly double if the updates
are done consecutively since each cell has to be visited twice.

On the other hand, the results in section 6.1.2 indicate that there are benefits of
applying Multigrid to a purely hyperbolic problem if a ‘very educated guess’ is sought
rather than convergence to machine precision. This is precisely the case in the Hyperbolic-
Elliptic splitting, where a good approximation to the entropy and enthalpy field will
increase the accuracy of the splitting. Since the same time-stepping and Multigrid schemes
work well with both parts of the solution, the extra effort that is incurred by splitting the
updates seems not to be balanced by any benefits of using different time-steppings. Thus,
the same Multigrid scheme that is used for the elliptic part will be applied here to the
advective part and all unknowns are updated simultaneously using the same time-stepping
scheme.

The optimal cycle parameters for the Euler equations were in general found to be
v, = 8 pre and v, = 1 post-iterations for Forward-Euler time-stepping and v, = 1 pre
and v, = 0 post-iterations for GauB-Seidel time-stepping.

The nodal preconditioning [26] that is used improves the stability of the scheme.
Rather than the stability limit of v.v, < .5 that is predicted by Fourier analysis of the
Lax-Wendrofl scheme on triangles [33], a practical limit of v.v, <1 is observed and used
in the calculations. The residual is monitored as the Ly-Norm of the residual of the density
(cf. equ. 6.1).

The boundary conditions are applied as overlapping ghostcells as described in [61] and
shown in figure 6.20. The fluctuation in triangle I1I vanishes in the limit of A — 0. Node
1 receives contributions from triangles I and II. Since the ghostcells for node 2 overlap
with the ones of node 1, only scalar upwind schemes can be used in this configuration
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Figure 6.20: Ghostcell geometry for weak boundary conditions for the Euler equations
with one reflected state and three boundary ghost cells. The triangulation
is not contiguous at the boundary.

that become single target for the case that the gradient is normal to the face. At the
boundary a normal is defined to choose the wave direction and any consistent wave-model
that reverts to a 1-D splitting can be used. Paillere [34] suggests to use Roe’s six-wave
model D [114]. The ghoststate is reflected for a solid wall boundary condition. For a
subsonic inlet the total pressure and for a subsonic outlet the static pressure are imposed.

6.3.1 Subsonic Flow over a Circular Bump

Subsonic flow over the GAMM channel [112] has been chosen as a subsonic testcase.
The geometry of the channel with the circular bump has been proposed for the GAMM
workshop [112] as shown in figure 6.21.

2.073
u,v=1
—%
M =.6,.85
AWLZ
.0
-2.0 -5 5 3.

Figure 6.21: The GAMM channel for subsonic and transonic flows. The height of the
bump is exaggerated to make it visible.

With the available coarse resolutions, the stagnation regions at the ends of the circular
arc are very underresolved and present no difficulties to the preconditioning. The solution
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shown in figure 6.22 is very accurate considering that the grid has only 863 nodes. Very

little entropy is produced along the bump.

_—
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Mach number:

Min = 0.4889

M, = 0.4900
AM = 0.0050
Mo = 0.6936
pressure:

Pmin = 1.834
pp = 1.840
Ap = 0.010

Pmaxz = 2.148

entropy:

Smin = -.T06E-04
sy = -.600E-04
As = 0.200E-04

Smaz = 0.400E-03

Figure 6.22: Solution for the subsonic GAMM channel, free-stream Mach-number .6 with
the hyperbolic-elliptic splitting. The solution shows very little entropy pro-

duction over the bump.

The optimal Multigrid parameters were determined by numerical experiments. The

results for various values of pre and post-iterations v,,v, are shown for GauB-Seidel in
figure 6.23(a) and indicate that there is no marked influence of these parameters. A
sawtooth-cycle with v, = 1,v, = 0 is used for GauB-Seidel time-stepping. A similar
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insensitivity to the cycling parameters is found for Forward-Euler suggesting as values
vy = 8,1, = 1.
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Figure 6.23: Convergence for for the subsonic GAMM channel, 863 node grid. Fig. a
shows the variation of the convergence with the cycling parameters, fig. b

shows a close-up of the convergence with varying orientation of the tilted
line that orders the cells.

Fig 6.23(b) shows the influence of the cell ordering for the GauB-Seidel sweeps. The
cells are ordered with increasing distance to a tilted line. E.g. a choice of a line with
Az = —.001, Ay = 1. through the origin, thus nearly 90° from the horizontal, will order
the cells of the GAMM channel in a inner loop from bottom to top and in the outer loop
from left to right. Four orientations of the tilted line are shown in the figure with virtually
identical results down to the small wave-reflections present in the sinusoidal oscillations
of the convergence. This is a surprising result since the advection of enthalpy and entropy
should benefit from a streamwise ordering with a 90° line. Apparently the convergence
of the subsonic case is determined by the elliptic system with the enthalpy and entropy
fields converging very quickly.

The convergence behavior shows a pattern that remains the same for all subsonic and
transonic calculations presented here (fig. 6.24). The slowest convergence is obtained to
no surprise with a Forward-Euler single grid scheme. Applying GauB-Seidel on the single
grid amounts to a tremendous acceleration of the convergence. For the first drop of two
orders of magnitude of the residual, the single grid Gau-Seidel scheme performs as well as
the 5-level Multigrid Forward-Euler scheme. The best performance as measured in work-
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Figure 6.24: Convergence curves for the subsonic GAMM channel, 863 node grid. Shown
are single-grid (marked with a symbol) and Multigrid convergence histories

(lines only) for GauB-Seidel (GS) and Forward-Euler (FE) time-stepping.

units is obtained from the Multigrid GauB-Seidel scheme. Varying the cycle parameters
actually seems to have very little influence on the convergence of that scheme.

Note however, that in the current implementation, one Gauf-Seidel work-unit takes
roughly 6 times the CPU time of one Forward-Euler work-unit. Thus, the work-unit ratio
being found around 1:3, Gauf}-Seidel is, in the current implementation, twice as expensive
as Forward Euler for subsonic cases.

This finding is repeated on the finer grids. Gauf-Seidel single grid compares less favor-
ably to Multigrid Forward Euler with increasing grid size. The ratio of 1:3 of convergence
rates in favor of GauB-Seidel when measuring CPU-time is again found on the finer grids.

Grid independence of the convergence is good, all curves tend to show little decay
in the convergence rate for increased grid size. Note however, that the sizes tested are
still relatively small and that for the smallest grid size a penalty for poor cell-nesting
is incurred as explained in the context of section 6.2.2. The convergence rate of the
GauB-Seidel scheme tends to decay a little in the later stages of convergence and the
effect becomes more pronounced with increasing grid size. Analysis of the temporal
behavior of the coupling between elliptic and hyperbolic parts might shed some light on
this phenomenon.

Convergence of about 7 orders of magnitude is achieved within 800 work-units for
GauB-Seidel and around 2000 work-units for Forward-Euler. While these values do not
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Figure 6.25: Convergence curves for the subsonic GAMM channel, 1592 nodes (a) and
3498 nodes (b).

indicate remarkable performance, it is a vast improvement over the single grid rate.

However, performance is impressive when not the convergence to machine precision
is sought, but to an intermediate level where all flow features are resolved to ‘plotting
precision’. Such an approach has been taken in [12]. The solutions to the subsonic GAMM
channel on a coarse 863 node grid are shown in figure 6.27 after 10, 20, 30 and 40 cycles,
respectively.
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Figure 6.26: Grid depéndencé of th@Mult‘i;é[gid c@ﬁ:i)()ergenlce for3#0%e GAMM channel, grid
sizes compared are 863, 1564 and 3498 nodes. Shown are Forward Euler
(va =8, v, = 1) and GauB-Seidel (v, = 1, v, = 1) convergence histories.
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Figure 6.27: Mach number contours of an Euler solution after a few Multigrid cycles.
Solution for the subsonic GAMM channel, 863 nodes, free-stream Mach-
number .6 with the Hyperbolic-Elliptic splitting, PSI-LW schemes and nodal
preconditioning. Cycle parameters were v, = v, = 1.
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6.3.2 Transonic Flow over a Circular Bump

The GAMM channel geometry is simulated with an inflow Mach number of .85 for a
transonic flow through the channel. Of major concern is the dissipation applied in the
shock region. Unfortunately, the Lax-Wendroff scheme applied is not very sophisticated
in its choice of artificial dissipation: only the scalar cell-time-step applied to the elliptic
system can be raised to increase the dissipation. However, since the two time-steps are
coupled, v.v, < 1, more dissipation means a loss in convection and a slowing down of the
convergence.

Three CFL-number combinations have been tested and the Mach number contours
are shown in figure 6.28. The solution with v, = 4 does show improved monotonicity
in the region around the foot of the shock. However, the entropy layer after the bump
indicates that excessive dissipation was applied globally to the solution. Pressure and
entropy contours for the v, = v, = 1 solution are given in figure 6.29.

The convergence rate for the 863 node grid in figure 6.30 shows a nearly linear de-
pendence on the nodal CFL-number, little benefit is derived for Gau-Seidel Multigrid
from the increased smoothing rate of the Lax-Wendroff scheme with an increased cell-
CFL-number. The single grid GauB-Seidel scheme does not compare in performance with
the Multigrid Forward-Fuler scheme for the first orders of convergence as it did in the
subsonic case (fig. 6.24). A comparison of the two single grid schemes in larger scales than
those of figure 6.30 shows a better convergence of the Gauf-Seidel in work-units with a
factor of three.

Multigrid Forward-Euler still converges slower than GauB-Seidel in terms of work-
units, however, the gap narrowed from 1:3 in the subsonic to 1:2 in the transonic case,
making Forward-Euler a third as expensive in terms of CPU.

Similar observations can be made studying the convergence of the schemes on the finer
grids (fig. 6.31). A remarkably poor convergence is shown by the Forward-Euler Multigrid
scheme. The oscillations around the shock completely inhibited convergence for the cycle
parameters v, = 8,1, = 1. Only with more smoothing by using v. = 12,v, = 1 slow
oscillatory convergence could be achieved. The Gauf-Seidel scheme seemed unaffected.

The comparison of convergence histories for all three grid sizes are shown in figure
6.32. All methods show little grid dependence in the transonic case.

Comparing convergence for the subsonic case (fig. 6.26) to the transonic case (fig. 6.32)
shows that the convergence is reduced for the transonic bump to 1/2 for the GauB-Seidel
scheme and to 2/3 for Forward-Euler. Transonic convergence is definitely not as good as
might be expected from our proper characteristic treatment, but the improvements over
the single grid performance is dramatic.
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6.4 Summary

A two-dimensional Multigrid scheme for vertex-centered solution algorithms has been
implemented, using the benefits of the vertex-nested grids available through the Frontal
Delaunay method presented in section 5.3. The Multigrid scheme has been applied to a
Fluctuation-Splitting discretization for scalar equations, the Cauchy-Riemann equations
and the Euler equations. GauB-Seidel time-stepping, Forward-Fuler time-stepping and
multistage time-stepping have been implemented and compared.

Not too surprisingly, the Multigrid scheme offers little for the scalar equation. Scalar
hyperbolic problems are best treated with a space-marching scheme that follows the char-
acteristics. The genuinely multidimensional first order scheme, the N-scheme, becomes
such a direct solver when applied to linear problems with Gauf-Seidel time-stepping in
the characteristic direction. Higher-order genuinely multidimensional Upwind schemes
like the PSI scheme benefit less from Gaufl-Seidel: with the constraint of compactness,
the stencil has to be extended laterally, making it impossible to find a sweep ordering
that updates all nodes in the domain of dependence. Multigrid actually more often slows
convergence rather than accelerating it for these schemes when considering the conver-
gence to machine precision. However, the initial convergence is accelerated by Multigrid,
which is a desired property in the context of seeking a decently converged state for a lin-
earization. For the non-linear PSI-scheme Gauf-Seidel and Forward-FEuler time-stepping
perform equally well in terms of CPU time consumed.

For the elliptic system of Cauchy-Riemann equations Multigrid proves most efficient.
The convergence rates with the Lax-Wendroff scheme are quite adequate and compare
acceptably to other methods. A better formulation for the hyperbolic time-dependent
system might be sought that reduces to a proper elliptic procedure, a div-curl formulation
comes to mind. As in the case of the scalar advection, GauB}-Seidel and Forward-Euler
time-stepping yield very comparable efficiency in terms of CPU time for lexicographic
ordering.

Both temporal discretization methods, GauB-Seidel and Forward-Fuler seem equally
well suited to treat the sub- and transonic Euler-system that is mixed hyperbolic-elliptic
in the steady state.

Since the elliptic system receives a treatment that reflects the mathematical behavior
of the steady state, a convergence rate comparable to the one of incompressible methods
should be possible. However, in the present case the sum is less than its parts: the overall
performance falls way short of the convergence results of the scalar advection schemes
or the Cauchy-Riemann equations. The insensitivity of the convergence results to the
sweep direction in GauB-Seidel suggest that the hyperbolic part is not dominant for the
convergence behavior.

Apparently, the inherent assumption has to be revised that the coupling terms between
the two parts of the system are negligible in their influence on the convergence. These
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terms do appear as variable coefficients in the Cauchy-Riemann like acoustic system in
the hyperbolic-elliptic splitting.
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Vp = .0
(c):

v. =4
v, = .25

Figure 6.28: Solution for the transonic GAMM channel, free-stream Mach-number .85.
The solutions are not monotonic for the cell-CFL-number v. = 1,2. Only for
v. = 4 the solution becomes nearly monotonic, however the globally added
dissipation creates a stronger entropy layer.
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pressure:

Pmin = 0.493
P1 = 0.500
Ap = 0.025

Pmaxz = 1.213

entropy:

Smin = -0.0039
S1 = -0.0030
As = 0.001

Smaz = 0.0134

Figure 6.29: Pressure and entropy contours for the transonic GAMM channel, free-stream
Mach-number .85 with v, = 1,v, = 1.
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Figure 6.30: Convergence curves for the transonic GAMM channel, 863 nodes.
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Figure 6.31: Convergence curves for the transonic GAMM channel, 1592 nodes (a) and
3498 nodes (b), v. = 1.
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Figure 6.32: Grid dependence of the Multigrid convergence for the GAMM channel, grid
sizes compared are 863, 1564 and 3498 nodes. Shown are Forward Euler
(va = 8, v, = 1) and GauB-Seidel (v, = 1, v, = 1) convergence histories.
The cell-CFL-number is taken as v, = 1.






Chapter VII

Waters to Chart, Lands to Visit

Harmlose Schwestern der Heilsarmee
sind die Sirenen,

verglichen mit dieser Todesgrazie,
die ihre Opfer zerstiickelt.

Cyrus Atabay, ‘Die Erkenntnis’

..

Ich lachte kein klein wenig, gar nicht ma sceur,
Der ich spielend dunklem Schicksal entgegenging —
Wihrend schon die Gesichter hinter mir

Langsam im Abend des blauen Walds verblafiten

Alles war schén an diesem einzigen Abend, ma sceur,
Nachher nie wieder, und nie zuvor —

Freilich: mir blieben nur mehr die grofien Vogel

Die abends im dunklen Himmel Hunger haben.”

Bertold Brecht, ‘Ich habe Dich nie je so geliebt’

“Now I gotta get up
early in the morning.”

Robert Palmer, ‘Heavy Nova’

For two-dimensional isotropic triangulations, the novel Frontal Delaunay scheme leaves
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little to be desired (cf. section 5.8). An extension to viscous grids has been designed [115],
but has not been as successful as the isotropic scheme documented here. Alternative
approaches [116] using hybrid grids seem more promising.

The need for non-isotropic grids even in inviscid flow calculations and the fact that
not all of the nice Delaunay properties extend from two dimensions let the Delaunay tri-
angulation shine a lot less brightly in three dimensions. For one, the property that the
discretization of a Laplacian guarantees a maximum principle on a Delaunay triangula-
tion does not hold in three dimensions [47]. For another, the Delaunay triangulation in
three dimensions allows the creation of a ‘sliver’, a very flat tetrahedron of four nearly
equidistant and nearly coplanar points. Most proofs of grid quality in two dimensions,
however, base the derivation of angular bounds on criteria of equidistance. Thirdly, the
fact that the grid quality of frontal Delaunay methods only exhibits very few elements
close to these bounds is based on the regularity of triangulations: a triangle does fill the
plane in a regular fashion. A tetrahedron doesn’t fill space regularly, and a look at the
irregularity of three-dimensional tetrahedral grids demonstrates this strikingly. As a last
remark, filling space with tetrahedra as opposed to hexahedra creates 4 times as many
elements with the same number of vertices. Experiments in two dimensions suggest that
the increased number of flux-calculations or residual-distributions does not lead to an
increased accuracy of the solution, since the number of degrees of freedom remains the
same [117].

Thus, the grid-generation in three dimensions for the coming years will be as hex-
ahedral as possible. Only where hexahedral mesh generation, unstructured hexahedral
approaches included, fail or are too cumbersome to use, prismatic and tetrahedral volume-
meshing tools will be chosen. For this choice, Delaunay with it’s robustness and speed
will still outclass the Advancing Front method. Efforts in generating high-quality 3-D
grids will have to be invested in hybrid grid matching, not in tuning Delaunay methods.

Multigrid convergence acceleration has been applied to the Euler equations using a
Hyperbolic-Elliptic splitting and a Fluctuation-Splitting space discretization. Conver-
gence 1s dramatically accelerated, but does not attain the rate of purely elliptic systems
(cf. section 6.4).

Various efforts have yet to be undertaken in order to reap the benefits of the out-
standing accuracy of the hyperbolic elliptic splitting. First and foremost, the temporal
behavior of the coupling terms between the elliptic and the hyperbolic parts of the solution
need to be better understood in order to obtain convergence results that are comparable
with purely elliptic or purely hyperbolic problems. Monotonic compact schemes for el-
liptic problems with highly varying coefficients are needed that have good high-frequency
smoothing properties and allow an optimal control of the dissipation as in scalar Upwind
schemes. Some promising recent progress has been reported [118].

A proper solution to the singularity of the preconditioning in stagnation points has
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to be found to obtain a method that is as robust as dimensionally split Finite-Volume
Upwind methods. A possible alley of research could be a formulation of the equations as
presented by Ta’asan.

A more efficient time-stepping method for Cell-Vertex methods than the current lexico-
graphic implementation of Gau8-Seidel has to be used, coloring schemes for unstructured
grids such as red-black come to mind.

What has been presented here does not offer the solution to the convergence problems
of compressible Euler and Navier-Stokes calculations. If the material shown has opened
more questions than it has answered, if it is a brick in the road toward accurately simu-
lating and understanding the flow in the artery and the thunderstorm, then this voyage
will be have been a worthwhile undertaking.
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Errata

“Someone had blundered.”

V. Woolf, ‘To the Lighthouse’

Ancestors of the Hyperbolic-Elliptic splitting

The work by El Dabaghi et. al. should have been mentioned. See e.g.: F. El Dabaghi,
O. Pironneau, J. Periaux, G. Poirier, “2-D/3-D Finite-Element Solution of the Steady
Euler Equations for Transonic Lifting Flow by Stream Vector Correction”, Int. J. Num.
Meth. Fluids, Vol. 7, pp. 1191-1209, 1987.

Also the very similar work of Hughes et. al. in [25], although not further pursued by
the authors, should have been linked more clearly to the splitting used here. ( March,

1996 )

Accuracy of the PSI-scheme

In section 3.2.5 on page 30 it is claimed that the PSI-scheme loses accuracy when it reverts
to the N-scheme in the two-target case. When looking at the PSI-scheme from the view
of limiters, one can actually show that the distribution coefficients remain bounded in
this case. Thus, the N-scheme is linearity preserving for the one-target case and for the
two-target case when the gradient vector intersects the outflow side. And consequently
no loss of accuarcy occurs for the PSI-scheme in this case. ( March, 1996 )

Consistent gradient

Equation 3.82 should have VZ in the second integral rather than VU.

VU:SLT//TVUCZA:SLT//TZ—IZJVZCZA:Z—IZJZVZ

( March, 1996 )






Abstract
ON TRIANGLES AND FLOW

by

Jens-Dominik Muller

Chairman: Phillip L. Roe

An accurate and efficient solution to the two-dimensional Euler equations on complex
domains is sought.

For this purpose, a novel unstructured grid generation method based on the Delau-
nay triangulation is presented that combines frontal vertex-generation methods with the
concept of the Delaunay triangulation. The method works on minimal user input such as
boundary vertices only and generates its own background grid for spacing interpolation.
Upper and lower angular bounds are estimated and the grid quality is analyzed statisti-
cally. A novel eway of obtaining within the framework of frontal grid generation methods
sets of coarsened multilevel grids that are vertex-nested is described and demonstrated.

Convergence of the scheme using Multigrid with Forward-Euler and Gaufl-Seidel
timestepping is examined for scalar advection equations and the Cauchy-Riemann equa-
tions, as well as Euler calculations for subsonic and transonic bump cases.

The FEuler equations are discretized in their conservative form using Fluctuation-
Splitting schemes and a “hyperbolic-elliptic” decomposition that splits the equations in
the subsonic case into two decoupled advection equations for entropy and enthalpy and
a coupled 2 x 2 system similar to the Cauchy-Riemann equations. In the supersonic case
the equations become a fully decoupled set of scalar advection equations.

It is found that when considered separately, Forward-Euler as well as Gaufl-Seidel
are suitable time-stepping schemes for hyperbolic and elliptic problems when used in
conjunction with Multigrid. Although the final convergence of purely hyperbolic equations
does not benefit from Multigrid, initial convergence to a useful estimate after few cycles
does. The efficiency found on the purely hyperbolic and elliptic problems is, however,
not recovered with for the full set of Euler equations, but a significant acceleration of
convergence compared to the single-grid scheme is found.
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