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Abstract

Higher-Order Spatial Discretization for
Turbulent Aerodynamic Flows

Stan De Rango
Doctor of Philosophy
Graduate Department of Aerospace Science and Engineering

University of Toronto
2001

A higher-order algorithm kas been developed for computing steady turbulent flow over
two-dimensional airfoils. The algorithm uses finite-differences applied through a gen-
eralized curvilinear coordinate transformation, applicable to single- and multi-block
grids. Numerical dissipation is added using the matrix dissipation scheme. Turbu-
lence is modeled using the Baldwin-Lomax and Spalart-Allmaras models. The various
components of the spatial discretization, including the convective and viscous terms,
the numerical boundary schemes, the numerical dissipation, and the integration tech-
nique used to calculate forces and moments, have all been raised to a level of accuracy
consistent with third-order global accuracy. The two exceptions, both of which proved
not to introduce significant numerical error, are the first-order numerical dissipation
added near shocks and the first-order convective terms in the Spalart-Allmaras tur-
bulence model. Results for several grid convergence studies show that this globally
higher-order approach produces a dramatic reduction in the numerical error in drag.
It can provide equivalent accuracy to a second-order algorithm on a grid with several
times fewer nodes. For subsonic and transonic single-element cases, errors of less
than two percent are obtained on grids with only 15,000 nodes while 4 times as many
nodes are required for the second-order algorithm. Similar accuracy is obtained for
a three-element case on grids with only 73,000 nodes, a third of that required by
the second-order algorithm. The results provide a convincing demonstration of the
benefits of higher-order methods for practical flows.
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Chapter 1
Introduction

In any free-market economy, businesses work diligently to obtain some sort of
advantage over their competition. Market dominance is often achieved by bringing
a product to market quickly and cheaply. To do so involves efficient product design
and development. This is certainly true in the commercial aircraft industry where
the recent decade has seen Bombardier, the first company to introduce the regional
jet, go on to play a dominant role in the regional jet industry.

The process of designing an aircraft has matured greatly since the Wright Flyer
took its first powered flight in 1903. Early on, engineers employed empirical ap-
proaches to solve aerodynamic problems. In the 1950s computational aerodynamics,
as a subset of computational fluid dynamics (CFD), was in its infancy. The compu-
tation of simple academic flows using linear equations and a few hundred unknowns
was considered state of the art. But aircraft designs grew increasingly complex and
so too did the types of flow conditions that needed to be examined. Designers began
relying heavily on experiments in wind tunnels. The process was slow and expensive.
It took almost 20,000 hours of wind tunnel testing to develop the General Dynamics
F111 and the Boeing 747 [27]. Advancing computer capabilities have since enabled
exceptional growth in CFD. The state of the art has now evolved to the ability to eval-
uate the flow about complete aircraft configurations using non-linear equations and
several million unknowns. Dependence on wind tunne! testing has been significantly
reduced with the increased use of CFD.
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Today’s CFD algorithms, however, do have their limits. Designers and engineers
require computational methods that are robust, accurate, computationally inexpen-
sive, and provide a fast turn-around. A substantial portion of the time required in a
simulation based on the Navier-Stokes (NS) equations is involved in problem setup,
including geometry definition and grid generation. Solutions to this obstacle are un-
able to keep pace with advances in computer technology and thus, should be the
focus of intense research by the CFD community. Equally challenging, however, is
the accurate and cost-effective simulation of viscous flow at high Reynolds numbers
associated with full scale flight. The time required to compute the solution of the
steady compressible Navier-Stokes equations for the flow about a complete aircraft
remains excessive for routine use in aircraft design. Consequently, numerical solution
techniques applicable to simpler physical models, such as panel methods or inviscid
solvers incorporating the boundary-layer equations, are still heavily used in the design
process, despite their limitations.

There are a number of ways to reduce the solution time for solving the Navier-
Stokes equations. The first is to exploit computer technology to the fullest. Many
CFD developers have turned to running existing algorithms on massively parallel
computers. Another solution is to improve the iterative method used to achieve steady
state such as modern Newton-Krylov type solvers [40]. An alternative approach
would be to reduce the mesh requirements by improving the accuracy of the spatial
discretization. This allows a reduction in the number of grid nodes required to achieve
a given level of accuracy, resulting in savings in both computing time and memory.
The accuracy of the spatial discretization can be improved by increasing the order of
accuracy of the discrete operator. The purpose of this work is to use a higher-order
spatial discretization to improve the efficiency of solving the Navier-Stokes equations
for steady aerodynamic flows. In this work, the term “higher-order” is used to indicate
orders of accuracy higher than second.
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1.1 Background

Higher-order spatial discretizations are typically more computationally expensive
per grid node than first- or second-order methods. They require smaller grid densities,
however, for a given level of accuracy. The increase in the computing expense per
node is generally outweighed by the reduction in the number of grid nodes needed, re-
ducing the overall computing expense. The promise of higher-order methods has been
recognized for some time, beginning with papers by Kreiss and Oliger [32] and Swartz
and Wendroff [55]. These authors examined the application of various finite-difference
spatial schemes to linear first-order hyperbolic equations with periodic boundary con-
ditions. They demonstrated the ability of higher-order centered schemes to signifi-
cantly reduce the number of nodes required to minimize phase speed errors when
numerically simulating the propagation of linear waves. They showed that, for the
cases studied, there was no significant advantage to using accuracies higher than
sixth-order. In general, as the algorithm accuracy increased, the benefits, in the form
of reduced grid density requirements, did not offset the added computational effort of
the algorithm. Fornberg [21] performed a similar study of spatial difference schemes,
including the use of fast Fourier transforms (FFT). The spatial derivatives of the
governing equations were replaced with the FFT scheme, producing very accurate
difference equations.

Higher-order methods have received considerable use in the numerical solution
of partial differential equations. In particular, they have been applied to problems
involving wave propagation over long distances. Within the domain of aeronautics,
they have primarily been used for time-dependent problems such as electromagnet-
ics [30] and aeroacoustics [62]. In these disciplines, the grid resolution requirements of
second-order methods can become excessive, leading to impractical CPU and mem-
ory requirements. Zingg [67] reviews a number of higher-order and optimized finite-
difference methods for numerically simulating the propagation and scattering of linear

waves.

Another area where higher-order schemes are necessary to make the computation
feasible is the simulation of transition and turbulence [44, 45, 65]. Direct Numerical
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Simulation (DNS) of turbulent flow is often not practical in terms of computational
effort and hardware requirements. An alternate approach that is less computation-
ally intensive is Large Eddy Simulation (LES). Ghosal [22], and Kravchenko and
Moin [31] provide a detailed analysis on the effect of numerical error on the accuracy
and robustness of LES of turbulent flows. The results illustrate the necessity of us-
ing higher-order methods for these types of simulations. In LES, the full turbulent
field is divided into a set of large-scale or “resolved” eddies and the small-scale or
“subgrid” eddies. Only the resolved eddies are computed directly while the net effect
of the large number of subgrid eddies are approximated by a single subgrid model.
For accurate simulations, the numerical errors associated with the large-scale model
should be small compared to the subgrid model. Both references demonstrate that,
for the cases examined, the truncation errors associated with a second-order scheme
in the large-scale model, are significantly larger than the subgrid term over a wide
range of wavenumbers. Higher-order schemes are therefore necessary to accurately
resolve the wide range of length scales of turbulence on practical grids.

In the disciplines discussed thus far, the use of higher-order methods remains an
active area of research. The application of higher-order methods to steady aerody-
namic flows, specifically the solution of the steady Reynolds-averaged Navier-Stokes
(RANS) equations, has been more limited. Initially, many RANS solvers used the
scalar artificial dissipation scheme presented in (28] to provide the numerical dissipa-
tion needed for stability. The scalar dissipation scheme, however, has been shown by
numerous authors [3, 20] to be excessively dissipative in slow moving regions of flow
for high Reynolds numbers. This results in contaminated boundary layers and over-
prediction of drag. There is no point in using a higher-order discretization as long as
the scalar dissipation scheme is used. The development of upwind schemes [49] and
matrix artificial dissipation [54] was thus critical to the successful implementation of
higher-order methods. It was shown in {68] that the numerical error introduced using
matrix dissipation is generally less than the truncation error from a second-order cen-
tered difference operator. With the implementation of these sophisticated numerical
dissipation schemes, the leading source of numerical error became the discretization of
the convective and diffusive fluxes. To reduce this leading source of error, researchers
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began implementing higher-order spatial schemes.

The discretization of the inviscid or convective terms for the RANS equations
has received considerable attention over the last decade. It is common to combine
a high-order treatment for the inviscid flux terms with a second-order approxima-
tion for the viscous fluxes. The higher-order treatment often consists of a third-
order upwind-biased scheme. Examples of higher-order upwind schemes used in con-
junction with second-order viscous approximations on structured grids can found in
(50, 23, 18, 61, 29].

Compared to standard explicit finite differences, compact schemes offer the ad-
vantage of using smaller stencil sizes to obtain a comparable order of accuracy [33].
Tolstykh and Lipavski [58] use third- and fifth-order compact upwind differencing
for the solution of Burgers equation and the 2D compressible NS equations. They
combine the high-order spatial scheme with GMRES [40] to aid convergence to steady-
state. Although Tolstykh and Lipavski use third-order approximations of the viscous
terms in the solution of Burgers equation and demonstrate the benefits of doing so,
they elect to use only second-order differencing when solving the Navier-Stokes equa-
tions. Mahesh (34] introduces a compact scheme applicable to the solution of the
Navier-Stokes equations in which both first- and second-order derivatives are solved
simultaneously. The intent is to solve the inviscid terms, consisting of first-order
derivatives, and the viscous terms, consisting of second-order derivatives, simultane-
ously. This new scheme was compared to the standard Padé scheme for efficiency
and accuracy using Fourier analysis. Unfortunately, Mahesh only illustrates how the
spatial scheme can be applied to the NS equations but does not show any solutions.

Yee (63] formulates a fourth- and sixth-order compact scheme based on the work
of Abarbanel and Kumar [1]. Compact schemes tend to exhibit better spectral reso-
lution compared to their non-compact cousins. They involve, however, a tridiagonal
matrix inversion which increases the operational count per node. Abarbanel and
Kumar [1] proposed a spatially fourth-order compact scheme without the associated
matrix inversion. Numerical experiments showed that their scheme exhibits poor
shock resolution even with added linear numerical dissipation. In [63], Yee modifies
the Abarbanel-Kumar compact scheme to be high-resolution at discontinuities and
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extends the scheme to a larger class of explicit and implicit high-resolution schemes.
Yee [63) also states that formal extension of the new schemes to include viscous terms
while maintaining the same order of accuracy is quite involved and computationally
expensive. Yee suggests the option of using standard non-compact second- or fourth-
order central differencing. Doing so, Yee [63] adds, raises the question as to the
effect of the inconsistent discretization of the equations on the overall performance
and accuracy of the final scheme. More recent work where Yee and colleagues exam-
ine higher-order compact spatial algorithms in the context of TVD and ENO type
schemes, including higher-order approximations for the viscous terms, can be found
in {64]. The application of the higher-order viscous terms are, however, applied to
DNS simulations and not the type of aerodynamic flows examined in this thesis.

In [19], Ekaterinaris presents a fourth-order accurate compact spatial discretiza-
tion for the Euler equations. Although we have restricted ourselves to the NS or RANS
equations thus far, this reference is included here because the higher-order scheme is
applied to the diagonal form [43] of the implicit ADI method of Beam-Warming {8].
The work presented in this thesis also employs the diagonalized Beam-Warming fac-
torization, and a comparison between the two schemes in future work might prove
useful. Also, unlike many researchers using implicit time-marching methods, Eka-
terinaris shows how to obtain fourth-order accuracy for the implicit operators. It
is common to retain low-order accuracy for the implicit operators for simplicity and
computational efficiency. But this practice of improper linearization of the discretized
equations can negatively affect convergence rates to steady-state.

It is apparent that much of the research on higher-order schemes in the litera-
ture concentrates on the application of such schemes to the convective terms of the
NS equations. Very little attention is given to the viscous or turbulence terms. Re-
searchers seem content to improve the spatial accuracy of the inviscid terms of a solver
while using a low-ordered approximation to the viscous terms. The assumption made
is that the error introduced in the differencing of the viscous fluxes is small. All the
references presented thus far demonstrate the significant benefits offered by higher-
order methods in terms of accuracy and efficiency. However, they do not address or
attempt to quantify the penalty of not improving the viscous flux approximation. An
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error in the viscous flux approximation within the boundary layer, where the fAow
is dominated by a balance between the viscous and inviscid fluxes in the streamwise
momentum equation, can lead to large errors in the prediction of drag.

Early evidence of an attempt to use a higher-order treatment of the viscous terms
for steady flow can be found in [7], where the case of a supersonic boundary layer
over a flat plate was examined. Hayder et al. [26] apply the same spatial algorithm
for subsonic flow over a flat plate. They compare two spatial schemes. The first
consists of fourth-order accurate approximations for the inviscid terms and second-
order for the viscous terms. The second scheme was uniformly fourth-order accurate
for both the inviscid and viscous terms. Boundary layer profiles illustrate the marked
improvement that comes from using a fourth-order accurate treatment of the viscous
terms.

Sjogreen [52] and Treidler and Childs {59] use a higher-order treatment for both
inviscid and viscous terms on structured grids for the solution of laminar flow past a
cylinder. Sjogreen [52] examines supersonic fiow at low Reynolds numbers. Second-
and fourth-order schemes are evaluated by performing grid convergence studies com-
paring surface skin-friction distributions. Accurate solutions were obtained on rela-
tively coarse grids (65x33) using the fourth-order scheme. In areas where the bound-
ary layer remained fully attached, the second-order scheme required 4 times as many
nodes to obtain similar accuracy. There were some limitations, however, to the higher-
order centered difference schemes used in [52]. They could not be used for discon-
tinuous solutions. Hence the outer boundary of the grid was fit to the bow shock
by using the Rankine-Hugoniot condition. Furthermore, scalar dissipation was used,
which may have limited the potential of the higher-order scheme.

Treidler and Childs [59] examine subsonic flow about a cylinder and also perform
grid convergence studies comparing various ordered spatial schemes implemented in
OVERFLOW [29], a well known compressible Navier-Stokes flow solver developed at
NASA Ames research center. The results indicate that examining total drag on each
grid can be misleading. Skin-friction and drag due to pressure can asymptote to the
grid independent value from opposite sides. Hence, numerical error in each of these
terms can cancel each other out presenting a far more positive picture than may ac-
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tually exist. The friction drag results computed using the higher-order discretization
described in [59] did not show significant improvement over the second-order solver.
The authors indicated that further study is necessary to isolate the cause of this be-
haviour. The authors added that there was some concern as to the accuracy of force
and moment integration and that more accurate post-processing might be necessary.

Visbal and Gaitonde [60] present both qualitative and quantitative analysis for
laminar, incompressible, subsonic flow past a flat plate and cylinder. Centered com-
pact schemes of up to sixth-order order are developed with filtering schemes of up
to tenth-order. As with previous authors, Visbal and Gaitonde [60] demonstrate
the reduced grid density requirements when using high-order spatial schemes. The
second-order scheme used in most of their comparisons with the higher-order meth-
ods, however, used scalar artificial dissipation which is likely the major source of
error presented in the results. When the second-order method was combined with a
fourth-order filter (instead of damping) in one experiment for the flat-plate solution,
its accuracy improved substantially. For the unsteady laminar flow past a cylinder,
Visbal and Gaitonde [60] compare results on two grids for the various spatial schemes
and compare the Strouhal number and maximum lift and drag coefficients. Individual
drag components were not provided, making it difficult to determine the true benefit
of the higher-order viscous terms. Further qualitative analysis was performed in 3D
for the unsteady laminar simulation of spiral vortex breakdown above a slender delta
wing. Compared to the second-order scheme, the sixth-order scheme was better able
to resolve the complex flow structures inherent in this flow. The sixth-order scheme
was 1.9-2.4 times more computationally expensive than the second-order scheme
depending on the details of the iterative solver. The authors make a conservative
estimate that the number of mesh points required in each coordinate direction can be
reduced by a factor of two. Consequently, for the type of 3D flow examined in [60],
the required memory and CPU resources can be reduced by factors of at least eight
and four, respectively.

Much of the analysis presented thus far demonstrating the efficiency of higher-
order methods for solving the NS equations is based on laminar flow conditions with
small free-stream Mach numbers. In the solution of the RANS equations in .conjunc-
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tion with turbulence modeling for compressible subsonic or transonic flow conditions,
the case is not as clear. Given the complexities of high-Reynolds number external
flows about single- or multi-element airfoils, the use of higher-order methods may
provide significant benefits. The flow around multi-element airfoils is generally more
complex than for single-element geometries. Adequately resolving separated regions
and confluent boundary layers often requires large grid densities. Nelson et al. [38]
demonstrated that second-order multi-block solutions for a 3-element airfoil are grid-
dependent, even with grid densities of over 100,000 points. New algorithms are needed
to reduce the number of nodes required to achieve sufficiently grid independent re-
sults, which would in turn reduce the CPU and memory requirements. In combination
with modern convergence acceleration techniques, higher-order methods appear to be
the next step towards achieving this goal.

Published research using higher-order methods with turbulence models for solving
external turbulent flow over single- or multi-element airfoils is limited. One example
can be found in Rangwalla and Rai [46]. They present a fourth-order finite-difference
scheme for solving the compressible thin-layer Navier-Stokes equations on grids hav-
ing multiple zones. They examine subsonic flow through an experimental turbine
stage and compare the fourth-order resuits with a standard third-order accurate
upwind-biased method. The third-order method was combined with second-order
approximations for the viscous terms. The Baldwin-Lomax {4] turbulence model was
used with both spatial schemes. As in [60], pressure and entropy contours illustrate
the capability of the fourth-order treatment to resolve complex flow physics between
elements and the vortices shed from the trailing edges. The third-order method with
second-order viscous approximations was unable to resolve and track the small scale
flow features given the grid density used.

Although the benefits of the fourth-order method in [46] were significant, a number
of issues were not quantified. The authors present a fourth-order scheme for the
viscous approximations but indicate that second-order approximations are used at the
surface and zonal boundary points. It is unclear as to how this affects the accuracy
of the solution in those areas. There is no indication as to the spatial accuracy of the
turbulence model or computation of vorticity. These quantities can also affect the
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accuracy of the viscous approximations. Much of the data presented in [46] are related
to pressure. There are no data presented with respect to viscous related items like
skin-friction or boundary-layer profiles. Such data are vital to aid in determining and
quantifying the benefits of using higher-order approximations for the viscous terms.
This literature review briefly summarizes the development of higher-order spatial
schemes for the NS or RANS equations. Although the application of higher-order
methods to DNS or laminar external flows has received considerable attention in
recent years, there still exists no clear demonstration that higher-order methods are
more efficient than conventional second-order methods in the computation of practical

turbulent aerodynamic fiows.

1.2 Objectives

The objective of this thesis is to develop a spatial discretization consistent with
third-order accuracy, and to provide a clear demonstration as to the efficiency of this
algorithm compared to a standard second-order scheme. We wish to demonstrate the
improved accuracy of the new higher-order algorithm on grids of practical density.
In order realize the full potential of the higher-order method, every aspect of the
spatial discretization must be addressed and raised to a suitable level of accuracy.
This includes:

o inviscid fluxes, including artificial dissipation or filtering,

metrics of the curvilinear coordinate transformation,

e viscous fluxes,

convective and diffusive fluxes in the turbulence model,

near-boundary operators,

extrapolation at boundaries,

e interpolation at zonal interfaces,
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e integration for force and moment calculations.

Although it is generally fairly straightforward to increase the accuracy of the basic
flux derivatives, some of the other components can be more problematic. In partic-
ular, high-order numerical boundary schemes can cause instabilities [70]. Transonic
flows with shocks introduce an additional degree of difficulty in that first-order nu-
merical dissipation is typically added near shocks, which can potentially undermine
the benefits of a higher-order method [9]. Grid convergence studies [66, 47 are used
to compare the accuracy of the higher-order discretization with a well-established

second-order discretization.






Chapter 2

Governing Equations

In this chapter the solution method for solving the Navier-Stokes equations is
presented. The higher-order spatial scheme is developed and implemented in CY-
CLONE [14], which is based on the thin-layer Navier-Stokes solver ARC2D [41]. This
solver uses a generalized curvilinear coordinate transformation and is thus applica-
ble to structured grids. The new spatial algorithm is also implemented in TOR-
NADO (17], an extension of CYCLONE to multi-block grids. TORNADQ is used
to model complex flow around multi-element airfoils. The governing equations are
presented in Section 2.1. The thin-layer approximation is described in Section 2.2,
and the Baldwin-Lomax and Spalart-Allmaras turbulence models are outlined in Sec-
tion 2.3. A description of the boundary conditions follows in Section 2.4.

2.1 Navier-Stokes Equations

The governing equations for aerodynamic flows are the Navier-Stokes equations.
In two-dimensional form for Cartesian coordinates (i, y), the equations can be written
as

% O8I et (% 30
at+az+ay‘1"'e 6z+6y (2.1)

13
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where

(2:2)

p
pu
o

e

contains the conservative variables. Here we scale the dimensional variables, Cartesian

coordinates (Z,§), density (5), velocity (i, ), total energy (€), and time (£), as

T oe=C_ t=“% (2.3)

y U= 5
aoo pmam

éml:c

F;
? = u=
p=5
where oo refers to free-stream quantities, ¢ is the chord length, and a is the speed of
sound, which for ideal fluids is @ = \/yp/p. The ratio of specific heats, v, is taken

as 1.4 for air. Pressure, p, is related to the conservative flow variables, @, by the

equation of state for a perfect gas, as follows
1 2, .2
p=(r-1)e-50(u +v°) (2.4)

Referring to Equation 2.1, the convective and viscous flux vectors are

pu pu
2
E=|"TP| F=| ™ (2.5)
puy v’ +p
| u(e+p) | v(e +p)
and
[0 ] [0 ]
E,= = y Fo= b (26)
Tzy Ty
[ A1 ] | #2 ]




Section 2.2. Thin-Layer Navier-Stokes Equations 15
respectively, with

T = (4 pe)(duz — 20y)/3

Toy = (B pe)(uy —vz)

T = (B+ pe)(—2uz + 4v,)/3 (2.7
Ui + 0Ty + (WPT 1 + wPrEY oy = 1718, 02)

hS
I

UTgy + 0Ty + (P71 + e Pri )y = 1)718,(a®)

P2

where p = ji/ji, is the non-dimensional dynamic viscosity, y; is the non-dimensional
turbulent eddy viscosity, Re is the Reynolds number, Pr is the Prandtl number and
Pr, is the turbulent Prandtl number. The Prandtl number is defined by

GH
p - —_-— 208
r== (2.8)

where «, is the thermal conductivity and c, the specific heat at constant pressure.
The Prandtl number is considered constant in this study and is set to Pr = 0.72 and
Pr. = 0.90. Using the chord of the airfoil, c, as the reference length, we define the
Reynolds number as

Re = P tlx (2.9)
Eos

2.2 Thin-Layer Navier-Stokes Equations

For the aerodynamic flows studied in this work, namely high Reynolds number
viscous flows, the effects of viscosity are concentrated near the airfoil surface and
in wake regions. Typically, the viscous derivatives in the streamwise direction are
neglected. This leads to the thin-layer approximation of the NS equations. The
rationale behind this approximation is that for attached and mildly separated flows,
the gradients of the streamwise diffusion terms are small compared to the normal

gradients.



16 Chapter 2. Governing Equations

Converting to curvilinear coordinates (£,1) [41], and dropping all the viscous
derivatives in the £ direction, we arrive at the thin-layer Navier-Stokes equations for
a curvilinear coordinate system as follows (see Figure 2.1):

aQ OE  oF _ ., .08

2.10
t% Yo o (2.10)
where,
i
=g "™ (2.11)
pv
- e -
The convective flux vectors are
[ pU ] [ pvV ]
5 pUu +&p Fe gl pVu +1zp (2.12)
pUv +&p pVu+mp
| (e+p)U -&p | | e+p)V —np |
with
U=&+&u+&§y, V=mp+nu+n (2.13)

the contravariant velocities. The variable J represents the metric Jacobian of the

transformation:
= (Teyy — Tn¥e) (2.14)
The viscous flux vector is
[ 0
§=J et ¥ T2 (2.15)
.My + Nyms
| z(umy + vmg 4+ my) + Ty (uma + yms +m;) |
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" COMPUTATIONAL DOMAIN
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" ret ' An=t
af=1
\ourru:m U
BOUNDARY L |
A § 77777777 [}

Figure 2.1: Carvilinear coordinate transformation (used with permission from T. H.
Pulliam)

with

M = (i + )4ty — 29y00)/3

(s + pe)(ytiy + i)

(1 + ) (~2natty + Ay ,) 3 (216)
my = (Prt+ uPrit)(y = 1) nady(c®)

(Pr=t+ Py = 1), 00

3
I

3
]

3
I

2.3 Turbulence Models

The effects of turbulence can be approximated by adding an eddy viscosity term,
g, to the dynamic viscosity x in the fashion shown in Egs. 2.7 and 2.16. In our
study, we use the algebraic Baldwin-Lomax [4] model and the one-equation Spalart-
Allmaras [53] model to compute g;.
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2.3.1 Baldwin-Lomax Turbulence Model

Currently, the Baldwin-Lomax turbulence model is only implemented in CY-
CLONE. It is inadequate for high-lift multi-element flow computations. The flow
may contain confluent boundary layers, large separated regions, and separated wakes,
none of which can be treated properly with algebraic models. Hence, it is not used
in TORNADO. This model is, however, quick and robust for single-element compu-
tations and provides sufficiently accurate results for attached and mildly separated
flows. In the Baldwin-Lomax model, the boundary layer is divided into two layers,

an outer and inner layer. The eddy viscosity in the two layers is given by

; <<
, = { (He)inner Y < Yerossover (2.17)

(Ht)outer Y > Yerossover
where y is the normal distance from the wall and Yerossover is the smallest value of y
at which values from the inner and outer formulas are equal.

For the inner region, the Prandtl-Van Driest formulation is used:

(Bt)inner = plz |w| (2.18)
| = ky[l — e @/AY (2.19)
where k£ and A* are constants, |w| is the magnitude of the vorticity:
du v
= 2.20
ol =5 - 52 (220)
and the law-of-the-wall coordinate y* is given by
gt Putry VPuTu Y (221)
P B

The subscript w denotes values at the wall, u, = \/7/ gy is the friction velocity, and
Tw iS the shear stress at the wall.
In the outer region, u; takes the following form:

(Be)outer = K Ccp 2 Fucke Fries(y) (2.22)

where K is the Clauser constant, C, is an additional constant, and

F
Fiyus, = min { Ymes Fmaz (2.23)
Cook Ymaz u.ﬁf;/Fm



Section 2.3. Turbulence Models 19

The quantities Fy,.; and ymq. are determined from the function
F(y) =yjw| [t — e&™/A")] (2.24)

In wakes, the exponential term of Equation 2.24 is set equal to zero. F,,,. is the
maximum value of F(y) in a profile and ym,. is the value of y that satisfies F(y) =
Finaz. The function Fy(y) is the Klebanoff intermittency factor given by

-1

[
Fua(y) = [1 +55 (yc"‘”) ] (2.25)

Ymaz

The quantity ugyy is the difference between maximum and minimum total velocity

in the profile and is given by

vuz + 92 in boundary layers
Usifs ={ ( Imas ary ey (2.26)

(Vu? + v®) ez — (VU? + ¥3)min  in wakes
The Baldwin-Lomax turbulence model is patterned after that of Cebeci {10}. Re-
quiring agreement with the Cebeci formulation for constant pressure boundary layers
at transonic speeds leads to the following values for the constants used in the above

equations:
At =26, C5 =16, Cuw =03

Cur =0.25, k=04, K =0.0168

2.3.2 Spalart-Allmaras Turbulence Model

The Spalart-Allmaras turbulence model is a one-equation transport model written

in terms of the eddy-viscosity-like term #. The equation is
Dv

B =L - fal So + ; [V - (v + 7) V9)] + cia (V5)? (2.27)

.\ 2
Ch1 v
- [cwlfw - -n—zfa] (2) + fuAU?
The kinematic eddy viscosity, v is related to the eddy viscosity term & through the

equation
n="vfa (2.28)
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where
3
=" _ 2.29
f vl xs + Csol ( )
and
v
X= - (2.30)
The production term S in the differential equation is given by
- v
S=85+ ;{ﬁf”g (2.31)
where S is the magnitude of the vorticity, d is the distance to the wall and

X

=1- .
fa=1-P o (232)
The destruction function f,, is given by
_ [1+8, s
nol5 2 o
where
g=r+cu(r®-r) (2.34)
and
v
= = 2.35
Skd? (2.35)
Transition is included using a trip function. The transition functions are
wi 2
fu = cuge exp("'!?m'A"ﬁ[ﬂFZ + gz dt)) (2.36)
fa = caexp(—cux’) (2.37)
where

. AU
g = min(0.1, ;——)

2.38
Az, (2.38)
In the transition functions, d; is the distance to the trip, w; is the vorticity at the

trip, and Az, is the grid spacing at the trip. The velocity difference between a field
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point and the trip is AU. The constants used for the Spalart-Allmaras model are

¢y = 0.1395 cyp = 0.622
¢y =35.0 =20
ca =1.2 ey =0.5
cu1 = e /K + (L +cia) /o

Cp2 =0.3 Cwz = 2.0
Cor =17.1

o= §- k=041

For multi-element airfoils there is a trip on the upper and lower surface of each
element so a point in the field could refer to more than one trip. In this instance the
closest trip of those on the correct surface of each airfoil is used. Since the effect of
the trip is very localized, two trips are never close enough to cause a significant effect
on the same field point. There are many subtleties regarding the implementation
of this model in a multi-block/multi-element context. Nelson [37] describes these
implementation issues for the Baldwin-Barth [5] turbulence model. The Baldwin-
Barth model is also a one-equation transport model and is implemented in much the
same manner as the Spalart-Allmaras model.

2.4 Boundary Conditions

The interior numerical scheme used in CYCLONE and TORNADO requires four
boundary conditions to be specified at each domain boundary. Physical boundary
conditions provide some of the necessary equations. Numerical boundary conditions,
normally obtained through extrapolation from the interior, are employed to make
up the balance. In this section, the boundary conditions are outlined, while the
corresponding spatial schemes are discussed in Section 3.2.

Figure 2.1 illustrates the computational domain for an external flow around a
single-element airfoil. There are three boundaries to address: body surface bound-
aries, far-field boundaries, and the wake-cut. All boundaries are treated explicitly
in both CYCLONE and TORNADQ, although there is an option in CYCLONE to
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k=Kmax

Flmax

=

(a) CYCLONE.

(b) TORNADO.

Figure 2.2: Normal and tangential directions at the boundaries.
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treat the wake-cut implicitly if the turbulence model is set up to do the same.

The normal and tangent directions at the boundaries are defined in a similar
manner in both CYCLONE and TORNADO for single-element C-grid topologies as
shown in Figure 2.2. In Figure 2.2(b) the solution domain is divided into three blocks
and each block side is numbered 1-4. The normal at the farfield boundaries is defined
to point out of the domain for both solvers.

2.4.1 Body Surface
Inviscid Flow

At the body surface (between points B and C in Figure 2.1), flow tangency must
be satisfied for inviscid flows. The normal component of velocity is set to zero and the
tangential components are linearly extrapolated. The normal and tangential velocities
at the body are given by

Vo = M‘M (2.39)
VT’z + 'iy

Vi = WY (2.40)
z + v

The pressure at the surface is extrapolated from the interior. The density is de-
termined from the equation for free-stream stagnation enthalpy, H, which is held
constant at the surface:

H, = €x *+ P _ €surf t+ Psurf (2.41)

P Psurf
Using Equation 2.4 and substituting for the energy variable in Equation 2.41, one
obtains the expression for density on the body surface:

= YPrur] (2.42)
Aot = o — ) (Hao — My + Pr))

Viscous Flow

For viscous flow, no-slip conditions are applied on the body surface. This condition
leads to the first two equations, velocities u = v = 0. Pressure can be obtained by
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extrapolation from the interior or a Neumann condition can be used where the normal

gradient of pressure at the wall is set to zero:

5 =" (2.43)

We prefer to use the Neumann condition as it is found to be more robust for higher-
order spatial stencils. Note that the assumption that dp/dn = 0 is not strictly correct.
However, for aerodynamic flows at high Reynolds numbers, the error introduced is
very small. We have experimented with both extrapolation of pressure and the Neu-
mann condition with no significant change in the solution. Furthermore, the error
introduced is a physical error, not a discretization error [48], and hence does not af-
fect the conclusions from grid convergence studies. Further discussion on this issue
can be found in Section 3.2.5. Density can be determined from either adiabatic or
isothermal conditions at the surface. We use adiabatic conditions in all calculations.
For an adiabatic wall, when coupled with the assumption of zero pressure gradient
and the perfect gas law, density also satisfies a zero normal gradient at the wall:

g—f’ - (2.44)

2.4.2 Far-field Boundaries
Inviscid - CYCLONE
The value of @ at the boundary node is calculated as follows:

. 1 s . 1. . .
Qe = E(Qm +Qe=£) - ESIQ(W)(Q«; - Qezt) (2'45)
sign(¥) = T sign(Aq) T,
where k is chosen in the direction normal to the boundary, and ¥ represents the

corresponding flux Jacobian as follows:

G
I
2

for k = kmaz {

I
4, .

o v
for j =10r j = jmaz {
K
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Figure 2.3: Normal and tangential directions at the boundaries for H-grid topologies.

In Equation 2.45, bc indicates the boundary value, co indicates values obtained from
free-stream conditions, and ext indicates values extrapolated from the interior nodes
of the mesh. A is a vector containing the eigenvalues of the flux Jacobian matrix
A = 3E[8Q or B = 3F/8Q. The matrix T contains the eigenvectors of ¥. These
variables will be derived in detail in Chapter 3. The eigenvalues and eigenvectors are
calculated from the mean state, Quyg = 3(Qoo + Qext)-

Inviscid - TORNADO

Before proceeding, it is prudent to expand on the normal and tangent definitions
outlined in Figure 2.2(b). For the majority of cases, TORNADO is used to solve flows
on H-grid topologies. Consistent with the normal and tangent directions defined in
Figure 2.2(b) for a multi-block C-grid, Figure 2.3 illustrates the directions defined
for an H-grid topology. Here, the normal and tangential velocities, depending on the
side forming the far-field boundary, are as follows:

¢=1 sides3and4

(2.47)
¢=—1 sides1and 2

Vo = ¢(feu + Kyv) {



26 Chapter 2. Governing Equations

- - $=1 sidesland 4
Vi = d(Ku — kv 248
¥ (% ){¢=-1 sides 2 and 3 (248)

The metric terms are defined by

& . &y .
———— sides 2 and 4 ——=— sides 2 and 4
K = V Ezn+ Ey and 'Ey = V Eﬁ?-*- E?
z sides 1 and 3 —Y___ sides 1 and 3

nz + y Vv ”: + My
(2.49)

The boundary conditions of Equation 2.45 have also been implemented in TOR-
NADO but were not used in this study. Instead, characteristic conditions are used
to apply the explicit far-field boundaries. The four variables used are the locally
one-dimensional Riemann invariants:

2a
Ry = V- pog | (2.50)

2a
R, = Vo+ — (2.51)

as well as V; and a function of entropy:
Ry = V. (2.52)
R =2 (253)
> .

These four values are set to free-stream values or they are extrapolated from the
interior flow variables depending on the sign of the corresponding characteristic speed.
For the Riemann invariants R, and Rj, the corresponding characteristic speeds are
A1 = Vp —a and )\, =V, + a respectively.

For subsonic inflow, V, < 0, A, < 0, and A; > 0 so the Riemann invariant
R; is determined from free-stream conditions (%eo,VUeo,@00), and Ry is determined by
extrapolation from the interior (Uez¢,Uezs,8ezt)- For subsonic outflow, V; > 0, A; <0,
and A; > 0. As in the case for subsonic inflow, R; is determined from free-stream
conditions and R, is extrapolated. For inflow, R; and Ry are set to free-stream
conditions. For outflow, they are extrapolated from the interior. Once these four
variables on the boundary are calculated, a number of quantities are recalculated

using the following relations:
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1
Vo = §(R1 + Ryp) (2.54)
1
e = Z(’y - 1)(R, - Ry) (2.55)
1 1
p = (G&RY™ (2.56)
1
p = ;pa2 {2.57)
and the velocities are obtained from
(Vi + 5V side 1 [ Va-KV; sidel
- -V — 6V, side 2 and =+ -y Vo + K.V, side 2 (2.58)
Ve — KV, side3 KyVo + KV, side 3 '
Va4 KV, side 4 | EVa—KV: sided

For supersonic inflow and outflow conditions, the reader is referred to [41].

Viscous

A common practice in viscous flow computations is to use simple extrapolation
of all variables from the interior at outflow boundaries (j = 1 and j = jinq in Fig-
ure 2.2(a)). The entropy gradients associated with convection of the wake make the
characteristic analysis used for inviscid flows inappropriate. Zeroth-order extrapo-
lation of p, pu, pv and p is often used. This process is equivalent to a first-order
approximation to 8q/d€ = 0 where ¢ may represent any of the variables mentioned
above and £ is in the direction normal to the outflow boundary. This approach is
used for both CYCLONE and TORNADO. Second-order approximations to the zero
normal gradient are used for the higher-order scheme.

2.4.3 Circulation Correction

For lifting bodies, the far-field boundary may affect the solution. To correct for
this effect, a far-field circulation correction is applied to the free-stream variables, as
described in Appendix A.
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Numerical Method

CYCLONE [14] and TORNADO [17] use implicit time-marching techniques to
iterate to steady-state. The time-marching method and other details of these two
solvers are described in Section 3.1. Section 3.2 describes the spatial discretization of

the new higher-order algorithm, which is consistent with global third-order accuracy.

3.1 Time-Marching Method

Although we are only interested in steady-state solutions for this work, the two
solvers are capable of efficiently solving unsteady external fiow about an airfoil [13, 15].
Since we are not interested in time accuracy, it is sufficient to use a first-order time-
marching method to advance the solution to steady state. The first-order implicit
Euler method is used since it has a broad stability region. When the implicit Euler
time-marching scheme is applied to Equation 2.10 one obtains

AQ™ + At (3E™1 + 0, ™! — Re™8,5™1) =0 (3.1)

where At is the time step and AQ = @*! — Q" with @™ = Q(nAt). The vectors E,
F,and § are locally linearized:

a

ErMY = B4 APAQT + 0(AB)
o= By BRAQM + 0(A) 3.2)

~

Sl = §n o KCAQ™ + 0(A)

29
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where the matrices A, B, and K are the fux Jacobians, defined by

i=28 g % 4 k=%
a0 a0

Combining Equations 3.1 and 3.2 one arrives at the following:
(7 + At A™ + A9, B™ — AtRe™'3,K™AQ" = R (3.3)

where
R = —AfEQ™) + 8,F(Q") — Re™'8,5(Q)]

In general, Equation 3.3 is prohibitively time consuming to solve directly. Var-
ious approximations can be made to the implicit operator (left-hand side) in order
to reduce the required computational time. The approximately-factored method of
Beam and Warming (8] can be applied to Equation 3.3. In combination with spatial

differences, the equations take on the following form:
[ + AtéeA™J[I + AtS, B™ — AtRe™'5,K"AQ" = R (3.5)

where
B = — A B(QM) + 6,F(Q") - Re™'6,5(Q™)]

The symbol ¢ in Equation 3.5 denotes a spatial operator. Central differences are
used for the spatial discretization. Note that central differences require the explicit
addition of numerical dissipation as described in Section 3.2.1.

To further reduce the complexity of the left-hand-side, the diagonal form of Pul-
liam and Chaussee [43] is implemented. The Jacobian matrices are diagonalized as

follows:
Ae =T 'AT; (3.7)
Ay =T, BT, (3.8)

where the matrices A¢ and A, are diagonal matrices whose elements are the eigen-
values of the flux Jacobians. The viscous flux Jacobian K cannot be simultaneously
diagonalized with the flux Jacobian B, so it has been dropped from the left-hand side.



Section 3.2. Spatial Discretization and Force Integration 31

However, a term approximating the viscous eigenvalues is added to the diagonal of
B, as described by Pulliam [41]. The matrix T¢ has the eigenvectors of A as columns,
and T;, has the eigenvectors of B as columns. The eigenvector matrices are factored

out, giving
Tell + AtoeA T, T[T + At A, — ALIS,(\ )T, AQ™ = AP, (3.9)
where A, is the term approximating the viscous eigenvalues and is defined as

=2 ens, (2
= otz + )i (3) (3.10)

Variable time stepping is used to accelerate the convergence rate by roughly equal-
izing the Courant numbers of each cell. Using a spatially varying time step can be
effective for grids with widely varying cell dimensions. Such grids are typical in aero-
dynamic simulations. The Courant number variation can be made more uniform by
scaling with the Jacobian:

Atre!
At = —reL_ 3.11
Vs (8.11)

3.2 Spatial Discretization and Force Integration

As stated in Section 1.2, one of the objectives of this thesis is to develop a con-
sistent third-order algorithm. To accomplish this, with the exception of first-order
dissipation used near shocks and some terms within the turbulence models, only finite-
difference stencils of at least third-order accuracy are used. The only other exceptions
are the stencils used near some boundaries. Numerical boundary schemes must be
chosen such that they, when combined with the interior scheme, remain stable for a
wide variety of flow conditions and preserve the global spatial accuracy of the interior
scheme. Gustafsson [25] has shown that numerical boundary schemes can be one
order lower than the interior scheme without reducing the global order of accuracy.
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Hence we can use second-order numerical boundary schemes while preserving third-
order global accuracy. Nevertheless, we use third-order boundary schemes wherever
possible. The details of the following items will be addressed in this section:

o numerical dissipation,

e inviscid fluxes,

o metrics of the curvilinear coordinate transformation,

e viscous fluxes,

e convective and diffusive fluxes in the turbulence model,
e near-boundary operators,

® extrapolation at boundaries,

e interpolation at zonal interfaces,

@ integration for force and moment calculations.

The following sections describe the new higher-order algorithm.

3.2.1 Numerical Dissipation

In order to maintain stability, numerical dissipation, often referred to as artificial
dissipation, must be added to the centered difference scheme used for the convective
fluxes. The numerical dissipation is added using the matrix dissipation scheme of

Swanson and Turkel [54]. It is implemented in the following manner:*

ok .
(%) = 0B~ Dedjy 14 (3.12)
Ik

*An analogous term appears in the 5 direction
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with

Y -1 (@ 5. _ 5
diste = Aligadi, (f,-+%,k Ag JjxQjn = szé kDeVede i Qj,k)

€a = romax(Tirig Tik Tiois)

eﬁ = max(0, x4 — fﬁ)

.. = [Pisik =205k +pioial
=

Pj+1k + 2Djk + Pj-14]
where d¢ is a centered difference operator, A¢ and V; are first-order forward and
backward difference operators, and x4 = 0.02. We use x; = 0 for subsonic flows, and
2 = 1.0 for transonic flows. The term T is a pressure switch to control the use of

first-order dissipation near shock waves, The matrix |A] is given by
|4 = T¢ A T; ! (3.13)

Here |A¢| contains the eigenvalues of the flux Jacobian matrix A = g—f, as follows:

[~ T B h
Ml 0 0 0 oy 0o 0 0
Al = 0 bl 0 o | _|o u o 0 614
‘ 0 0 |A| O 0 0 |[U+al] 0
0 0 0 || [0 o 0 |U-af]

where U is the contravariant velocity component in the £ direction, a is the speed
of sound, 9 = \/E2 + &, and &; and & are the metrics of the curvilinear coordinate
transformation. The matrix T contains the right eigenvectors of A. In evaluating
(filﬂ,% x we have used the simple average (1{|Al;x + [Alj+14]); the Roe average is
recommended for flows containing very strong shock waves. To avoid zero eigenvalues,
the elements of |{A|¢ are modified as follows:

M A2 = max(h 2 Vio)

ds = max(g,Vo0) (3-15)

A = max(l, Vpo)

where o is the spectral radius of the flux Jacobian. We use V; = V;, = 0 for subsonic
flow, and V; = 0.025, V,, = 0.25 for transonic flows. Note that the value of V; has a
much greater effect on stability and total drag than V.
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Pulliam {42} showed that the best rate of convergence for the Euler equations is
achieved when matched artificial dissipation operators are included both implicitly
and explicitly. A contribution from the dissipation, analogous to Equation 3.12, is
therefore added to the left-hand-side of the implicit algorithm of Equation 3.9.

The variable d; +3k in Equation 3.12 contains second- and fourth-difference terms
which scale as first- and third-order terms respectively. The fourth-difference term
uses a symmetric five-point stencil:

1
A_E(Qj+2 — 4¢j41 + 695 — 4g;-1 + gj-2) {3.16)

At near-boundary nodes, the following operator is commonly used for the dissipation:

1
AE =241 + 5¢; — 4gj-1 + gj-2) (3.17)

Since this term is only first-order accurate, it is replaced by the following second-order

operator for use with the higher-order scheme:

1
KE(Q‘H-? — 3gj+1 + 3¢5 — gj-1) (3.18)

Oscillations in the vicinity of shocks in transonic flow can arise when using third-
order dissipation. To provide better shock resolution, first-order dissipation is added
near shocks through the use of the pressure switch, T, described above. The effect of
first-order dissipation on the global accuracy of transonic solutions is investigated in
the Chapter 4.

3.2.2 Inviscid Fluxes

Centered differences are used for the convective fluxes. Note that the use of fourth-
difference (third-order) dissipation necessitates the use of a five-point stencil and
thus the solution of pentadiagonal systems. Increasing the accuracy of the centered
difference operator to fourth order does not increase the stencil size, and the overall
increase in computing expense per grid node is small. Finally, note that the grid
metrics are evaluated using the same operators as the convective fluxes without any
numerical dissipation. It must be stressed that matching the spatial operators of
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the metrics and convective terms is critical. Not doing so generates large truncation
errors. The resulting source term precludes the ability to obtain a zero residual for
initial uniform free-stream conditions.

The following operators are used to approximate first derivatives:

Higher-order Algorithm

Interior (4th-order)

1
d¢q; = 1—2&("0#2 + 8gj41 — 8gj_1 + gj-2) (3.19)

First Interior Node (8rd-order)

1
d¢q; = @E(—ij'l — 3q; + 6qj41 — Qj+2) (3.20)
Boundary (3rd-order)
1
deq; = 2_4A—§(—11‘Ij + 18gj41 — 9¢j+2 + 2gj43) (3.21)

The last equation is required only for the calculation of grid metrics.

3.2.3 Viscous Fluxes

The viscous terms are in the following general form:

0n(j0nB;) (3.22)

There are a number of ways to deal with Equation 3.22. Some researchers elect to
expand the expression, through chain-rule differentiation, into its non-conservative
counterpart (33, 44, 45, 34] consisting of first and second derivatives as follows:

(aﬁn)n = anﬂn + aﬁvm (323)

The reason is that direct evaluation of the second derivative is significantly more ac-
curate at the small scales than two applications of a first-derivative operator. This

would make the non-conservative form more attractive to those using DNS. Another
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reason could be that successive applications of standard centered-difference opera-
tors for first derivatives may not provide sufficient damping to odd-even modes. In
the present work, the conservative form of the viscous terms is computed. We ap-
ply successive differentiation using quantities at mid-points of the mesh to obtain a
conservative operator. The differentiation is first biased in one direction and then
biased in the opposite direction to complete the second derivative. We have used this
approach without encountering any difficulty.

The following fourth-order expression is used to calculate the 8,8; term, from
Equation 3.22, at half nodes:

1

(648) i+ = m(ﬂj-l —278; + 27Bj41 — Bj+2) (3.24)

Near boundaries, the following third-order expression is used:

1
{02B)js1 = m(—%ﬁ,- + 218541 + 3Bj12 — Bjsa) (3.25)
The value of o, 1 is determined using the following fourth-order interpolation for-
mula:
1

aj+% = ﬁ(—a,-_l + Qa,- + 9&5+1 - C!j+2) (3.26)

Near boundaries, a third-order formula is used:

1
@544 = 530y + 62511 — ay12) (327)

Using the following similar expressions,

$;i = & 10nB51
1
(00#)je1 = m(—¢j+l +27; — 2191 + ¢5-2) (3.28)
1
(5-1‘35),'-; = 34An —23¢;-1 + 218; + 3dj41 — Bjs2)
the complete operator becomes:
1
dnlasnfs) = o= A7 (@j-372(¢0B)i-312 (3.29)
—2Taj—1/2(008) 112
+270541/2(00B) 172

—tj13/2(0nB)i4312)
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in the interior, and

1
dn(ajonB;) = M(-zgﬂj-lﬂ(&qﬁ)j-lﬂ (3.30)
+2laj1/2(8nB)iv1/2
+30j43/2(8,8) 51372

-aj+5/2(5nﬁ )j+5/2)

near boundaries. This approach leads to a seven-point stencil. On the left-hand-side
of the approximate factorization algorithm, we use a second-order operator which is

identical to the one used in the original second-order algorithm.

3.2.4 Turbulence Models

The implementation of the Baldwin-Lomax and Spalart-Allmaras turbulence mod-
els requires the calculation of the vorticity. The procedure is slightly different for the
two turbulence models due to implementation issues.

For the Baldwin-Lomax turbulence model, vorticity is computed at the half-nodes
using the operators given in Equations 3.24 and 3.25. The grid metrics are interpo-
lated to the half nodes using Equations 3.26 and 3.27. Since the computation of the
eddy-viscosity takes place at the half nodes, all other relevant information is also
interpolated using the higher-order interpolants.

For the Spalart-Allmaras model, the eddy-viscosity is first computed at each node
and then interpolated to the half node position. Hence, vorticity is computed using
Equations 3.19 - 3.21. Equation 3.21 is used to compute vorticity on the airfoil
surface. Since the grid metrics are computed at the same nodal positions, there
is no need to interpolate. Once the eddy-viscosity is computed at each node, it is
interpolated to the half nodes using Equations 3.26 and 3.27.

The diffusive terms in the Spalart-Allmaras turbulence model are handled in the
same manner as the viscous terms described in the preceding subsection. A first-order
upwind scheme is used for the convective terms in order to maintain positivity of the
eddy viscosity. We have experimented with a third-order upwind-biased treatment of
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the convective terms and seen no degradation in accuracy associated with the use of
the first-order operator.

3.2.5 Boundary Conditions and Zonal Interfaces
Far-Field Boundary

The far-field boundary conditions are described in Section 2.4.2 for bath CYCLONE
and TORNADO. The following second-order extrapolation operator is used at the
far-field boundary:

Gq=3@—-3+qu (3.31)

Extrapolation formulas of third order and higher in combination with the fourth-order
interior scheme (i.e. Equation 3.19) proved unstable for both far-field and airfoil-body
boundary conditions. We expand on this topic in the following subsection.

As described in Section 2.4.2, the use of a finite domain does introduce error, even
when a circulation correction is used [66]. The error varies with the inverse of the
distance to the outer boundary (48). However, this error does not depend on the grid
density and thus does not affect the error estimates from the grid convergence studies.

Airfoil Body
The pressure at the airfoil surface is determined from a third-order approximation to
dp/on = 0 (see Section 2.4.1), which gives
1
n= H(lspz —9p3 + 2py) (3.32)

Note that third-order boundary schemes are sufficent to maintain fourth-order global
accuracy. Density at the airfoil surface is determined from an expression analogous
to Equation 3.32. We have experimented with extrapolation of pressure and density
using Equation 3.31 and the following third-order operator:

@ =4 —6g3 +4q4 — g5 (3.33)

Both one- and two-dimensional experiments have shown that for extrapolation, the
highest order of accuracy that can be used while maintaining stability appears to be
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2 less than that of the interior scheme. In our experience, Equation 3.33 has proven
to be unconditionally unstable in conjunction with Equation 3.19 used in the interior.
Equation 3.31 was mildly stable for small time-steps. First-order extrapolation proved
to be very robust but it would undermine the global accuracy of the higher-order
scheme. Experiments with stencils of up to third order (i.e. Equation 3.32) used to

approximate Equation 2.43 proved stable for all the cases examined in this work.

Wake-Cut

Although the Baldwin-Lomax model is implemented with either an implicit or an
explicit wake-cut, the Spalart-Allmaras model is not implemented to handle wake-
cuts implicitly. For consistency, all results presented in this thesis are computed while
treating the wake-cut explicitly. The interpolation at the wake-cut (wc) is computed
to fourth-order using the data above and below the wake-cut as follows:

1
Qkoe = E(—kaﬂ + 4Gkt + Akpe—1 — Thpe-2) (3.34)

Treatment of Block Interfaces

Neighbouring block boundaries, in the streamwise direction, are overlapped at
the interfaces. A specified number of columns of points are taken from the neigh-
bouring block (known as the halo column). Consider the rectangular 2-block grid in
Figure 3.1. For simplicity, only one halo column will be considered here. The first
interior column of block 2 is stored in the halo column of block 1, and the last interior
column of block 1 is stored in the halo column of block 2. Blocks 1 and 2 are then
updated independently, resulting in two solutions at the block interface. The two in-
terface solutions are subsequently averaged. At steady state, the streamwise interface
is completely transparent. Common block interfaces in the cross-stream direction
(i.e., sides 1 and 3 in Figures 2.2(b) and 2.3) are treated like wake-cuts and employ
Equation 3.34.
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Figure 3.1: 2-block grid with halo data.

3.2.6 Force Integration

A popular second-order approach to the integration of the pressure field is to
take the average C, value between two neighbouring nodes on the airfoil surface and
have the vector act normal to the line joining the two points. This is illustrated in
Figure 3.2. Proceeding around the airfoil, the appropriate contributions in both the
normal and axial direction with respect to the chord line are summed. Once the shear
stress is computed at every node, it too is averaged and summed to give the viscous
contribution to the normal and axial forces. A more accurate procedure is necessary
to maintain high-order global accuracy.

The following expressions are used to evaluate the normal and axial force coeffi-
cients, Cy and C, respectively, with respect to the chord line. (For ease of presenta-

tion, we consider the pressure contribution only.)

Cy = % f —C,(f - §)ds (3.35)
Cy = % f —Cy(h-2)ds (3.36)

where c is the chord length, s is the arclength along the airfoil surface (see Figure 3.2),
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Figure 3.2: Average C, values for integration of surface pressure.

z and y are the Cartesian coordinates, and £ and 7 are unit vectors in the coordinate

directions. The unit normal with respect to the surface, #, is given by

& (3.37)
\/ ()2 + ()

We integrate the pressure and shear stress distributions with respect to the arclength
around the airfoil. This avoids any possible singularities near the leading or trailing
edges.

A cubic spline is used to fit a curve through the nodes making up the airfoil
surface. The spline allows for the 3rd-order interpolation of ‘%‘ and % at any point on
the airfoil surface. The pressure distribution is also splined. An adaptive quadrature
routine is used to integrate Equations 3.35 and 3.36. The quadrature routine uses the
two-point Gauss-Legendre rule as the basic integration formula with a global error-
control strategy. Details regarding the mechanics of the global strategy can be found
in Maleolm and Simpson[36].

The calculation of C, does not explicitly involve any differencing. The skin-friction

coefficient, Cy, however, is computed as follows:

Cr = 3.38)
1= (

where 7, is the shear stress along the airfoil surface, goo = pcMZ,, is the dynamic
pressure, and M, is the free-stream Mach number. The shear stress is computed as
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follows:

(3.39)
= I‘[(“Efy + upny) — (vebz + "n’lz)]

For viscous flow, u = v = 0 along the airfoil surface, hence u¢ = v = 0. The
following fourth-order spatial operator is used for the derivatives computed normal
to the surface:

1
6,,!11 = T{A—n(—z'ﬁql + 48¢> — 36q3 + 16¢4 — 3Q5) (340)

The grid metric terms use Equation 3.21. Note that explicit use of the metric terms
in Equation 3.39 underlines the importance of the accuracy of the metric terms if one
is to compute skin friction accurately. The commonly used second-order counterpart
to Equation 3.40 is as follows:

1 .
oy = %7 -3q1 +4q; — q3) (3.41)

It has been our experience that this stencil is inaccurate for grids that are highly
stretched in the direction normal to the airfoil surface. The truncation errors are
large and contribute considerable error to the integrated drag force. For a thorough
study of the effect of grid density and distribution on skin friction using various

turbulence models, the reader is referred to reference [57].



Chapter 4
Results and Discussion

In this section, we compare results computed using the higher-order algorithm
with those computed using a second-order discretization. Both schemes use matrix
dissipation. The second-order scheme uses a second-order three-point centered stencil
for the grid-metric approximations and the inviscid and viscous fluxes. Zeroth-order
extrapolation is used at the body surface and the far-field boundaries. The shear-
stress distribution on the airfoil surface and integrated body forces are computed to
second-order accuracy.

Zingg at al. [69] showed that this second-order discretization produces numerical
accuracy which is very similar to that obtained using either a third-order upwind-
biased flux-difference-split scheme or the convective upstream split pressure scheme
with second-order approximations for the viscous fluxes. Hence this lower-order dis-
cretization is representative of the most popular current algorithms and provides a
suitable benchmark for assessing the higher-order discretization. The goal of many
researchers in CFD today is to be able to predict total vehicle drag to within 1
or 2 percent [2, 12]. Physical-model errors such as those associated with laminar-
turbulent transition, turbulence, and the thin-layer approximation generally exceed
those error levels. Limiting the numerical error to two percent, however, helps to
avoid compounding these errors and allows for a more accurate assessment of the
physical model.

The accuracy of the integration routines is investigated in Section 4.1. Results

43
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obtained using CYCLONE are presented in Section 4.2 and those obtained using
TORNADQO are presented in Section 4.3. The figures of this chapter are in Ap-
pendix B.

4.1 Force Integration

To investigate the accuracy of the integration routines we examine a flow for which
there is an analytical solution. Using a conformal mapping, we can obtain the pressure
distribution and the lift coefficient for the steady incompressible potential flow over
a Joukowsky airfoil. Thus we can evaluate integration techniques by applying them
to a finite number of pressure values from the analytical pressure distribution and
comparing with the analytical lift and drag coefficients. Figure B.1 depicts the error
incurred in using the two different integration algorithms (designated “2nd-order” and
“third-order”) in computing C; and C; as a function of the number of points used in
the integration procedure, N. The figure shows the expected slopes corresponding to
second- and third-order accuracy. The higher-order integration scheme reduces the
error significantly. With, say, 200 points distributed around the airfoil, the second-
order integration procedure produces an error in the lift coefficient well below 0.001,
which should suffice for virtually any aerodynamic application. However, the error
in the drag coefficient is about 1 x 10~5, which is likely to affect the third significant
figure in a practical context.

4,2 CYCLONE Results

4.2.1 Overview of Test Cases and Grid Details

Computational results, obtained using CYCLONE, are presented for the following

test cases:

1. NACA 0012 airfoil, M,=0.16, a=6°, Re=2.88 x 10°, laminar-turbulent transi-
tion at 0.05 and 0.8 chords on the upper and lower surfaces, respectively.
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2. NACA 0012 airfoil, M, =0.16, a =12°, Re=2.88 x 10°, laminar-turbulent
transition at 0.01 and 0.95 chords on the upper and lower surfaces, respectively.

3. NACA 0012 airfoil, My, = 0.7, « = 3°, Re = 9.0 x 105, laminar-turbulent
transition at 0.05 chords on both surfaces.

4. RAE 2822 airfoil, M =0.729, a=2.31°, Re = 6.5 x 105, laminar-turbulent
transition at 0.03 chords on both surfaces.

5. RAE 2822 airfoil, My, = 0.754, a = 2.57°, Re = 6.2 x 105, laminar-turbulent
transition at 0.03 chords on both surfaces.

These cases span a range of typical aerodynamic flows. Cases 1 and 2 are both
subsonic flows, the former fully attached, the latter mildly separated. Experimental
data can be found in Gregory and O'Reilly [24]. Cases 3 and 4 are transonic flows
with moderate-strength shock waves. Case § is characterized by a much stronger
shock wave on the upper surface than Case 4. There is also a much larger region of
shock-induced boundary-layer separation. Experimental data for Cases 4 and 5 can
be found in Cook et al. [11] The measured coordinates for the RAE 2822 airfoil are
used, as in Maksymiuk et al. [35], rather than the standard coordinates.

Tables 4.1 and 4.2 summarize the grids used for CYCLONE. The family of grids
outlined in Table 4.1 is primarily used for subsonic cases 1 and 2, while the grids
described in Table 4.2 are used for transonic cases 4 and 5 only. Both families of
grids are used for case 3. All of the grids have a “C” topology. The distance to the
far-field boundary is 12 chords for all grids. While this causes some numerical error,
the error does not scale with grid density. The error is proportional to the inverse of
the distance to the outer boundary [48]. Since the distance to the outer boundary is
common to all grids, this error will not affect our conclusions. Grid A was generated
using an elliptic grid generator. Grid B was generated by removing every second node
in both coordinate directions from grid A, and grid C was similarly generated from
grid B. This technique produces a sequence of grids suitable for a grid convergence

tWhen a grid is referred to without a numeric reference, i.e. grid A instead of grid Al or A2, we
are referring to grid A from both sets of families.
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Points on | Points on | Off-Wall | Leading Edge | Trailing Edge
Grid | Dimensions | Upper Lower | Spacing | Clustering Clustering
Surface | Surface | (x107%) (x107%) (x1073)
Al | 1057 x 193 401 400 0.23 0.1 0.5
B1 529 x 97 201 200 0.53 0.2 1.0
C1 265 x 49 101 100 1.2 0.4 2.0
Cla | 277x 49 113 100 1.2 04 20
Table 4.1: Grid family 1 (CYCLONE).
Points on | Points on | Off-Wall | Leading Edge | Trailing Edge
Grid | Dimensions | Upper Lower | Spacing | Clustering Clustering
Surface | Surface | (x107%) (x107%) (x107%)
A2 | 1025 x 225 501 300 0.23 0.1 0.25
B2 | 513x 113 251 150 0.53 0.2 0.5
C2 257 x 37 126 75 1.2 0.4 1.0

Table 4.2: Grid family 2 (CYCLONE).

study. Two examples of the grids used are shown in Figure B.2. Where transonic
cases are examined using the first family of grids, we also show results for grid Cla,
which has additional grid nodes clustered near the upper-surface shock wave. The
second family of grids has increased node density in the normal direction and more
nodes on the upper surface than the lower surface (but no clustering at the shock).
Grid C, from both families, is relatively coarse (under 15,000 nodes), with a node
density suitable for extension to three-dimensional computations, while grids A and
B are primarily for estimation of solution errar. For all grids and cases, the y* value
at the first point from the surface is less than one, where y* is the standard law-of-
the-wall coordinate, and therefore there are a few grid points in the linear sublayer

of the turbulent boundary layers.

4.2.2 Test Case 1 - NACA 0012 Subsonic Flow

Figure B.3 shows the lift, pressure drag, and skin-friction drag computed using
the Baldwin-Lomax turbulence model for case 1 on grids Al, Bl, and C1. The
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corresponding results computed using the Spalart-Allmaras turbulence model can
be found in Figure B.4. They are plotted versus 1/N, where N is the number of
grid nodes. Agreement between the two algorithms on grid Al is good, indicating
that numerical errors are very small on this grid. Thus grid Al provides a reference
for estimating numerical errors on grids Bl and Cl. Individual drag components,
pressure and friction drag, are shown instead of total drag in order to get a better
picture of solution accuracy. The errors in these components are often of opposite
sign.

Examining the results using the Baldwin-Lomax model for case 1, one finds that
both discretization schemes produce errors in lift of less than one percent on grid C1.
The errors in pressure drag on grid C1 are larger, with the higher-order algorithm
producing about 3 percent error and the second-order algorithm producing an error
of approximately 40 percent. Similarly, the higher-order algorithm produces an error
in friction drag below 2 percent on grid C1, while the error from the second-order
algorithm approaches 12 percent.

The results obtained using the Spalart-Allmaras model, displayed in Figure B.4,
are similar to those obtained using the Baldwin-Lomax turbulence model. The similar
error levels indicate that the first-order convective terms in the Spalart-Allmaras
model are not a significant source of numerical error. The second-order algorithm
produces an error in pressure and friction drag, on grid Cl1, of almost 30 percent
and 15 percent respectively. Similar to the Baldwin-Lomax results, the higher-order
algorithm produces error levels of approximately three percent in pressure drag and
one percent in friction drag.

The results presented in this work are not intended to demonstrate the formal
order of accuracy of the higher-order algorithm. In fact, the data in Figures B.3 and
B.4 provide no indication that the order of accuracy of the higher-order algorithm is
greater than second-order. Without proper treatment of flow or grid singularities, it
is unlikely that third-order behaviour can be shown. Instead, we wish to emphasize
the improved accuracy of the higher-order algorithm on grid C1, which is typical
of grids used in practice. Based on Figures B.3 and B.4, the higher-order solution
computed on grid C1 is more accurate than the second-order solution computed on
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grid B1, which has four times as many nodes.

4.2.3 Test Case 2 - NACA 0012 Subsonic Flow

The flow in this test case is characterized by a small region of separated flow on
the upper surface near the trailing edge. To provide a broader perspective on the
potential of the higher-order scheme, the accuracy of four different spatial discretiza-
tions are compared. The family of grids from Table 4.1 are used and the results, using
the Baldwin-Lomax turbulence model, are plotted in Figure B.5. The methods are
labelled as follows:

1. Second-order - matrix artificial dissipation with second-order centered differ-
ences for both inviscid and viscous fluxes, second-order metric approximations
and force integration;

2. CUSP - the convective upstream split pressure (CUSP [56]) scheme as imple-
mented by Nemec and Zingg [39], with second-order centered differences for
both inviscid and viscous fluxes, second-order metric approximations and force
integration;

3. Third-order upwind - third-order upwind-biased scheme [49] for the inviscid
terms, as implemented by Jespersen et al. [29], with second-order viscous terms,

grid metrics, and integration;

4. Higher-order - matrix artificial dissipation with fourth-order centered differ-
ences for the inviscid and viscous terms, fourth-order metric approximations

and third-order force integration;

The errors in the lift coefficient for all four methods are below two percent on
grid C1. All of the methods appear to be equally accurate. Closer inspection of the
flowfield within the boundary layer shows that this is not the case, as we shall see
later. The errors in the drag coefficients computed on grid C1 are much larger. For
the two subsonic cases, examined thus far, the benefits of the higher-order scheme
are significant. The errors in pressure and friction drag produced by the higher-order
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scheme on grid C1 are generally less than two percent. Furthermore, these errors are
smaller than those produced by the other three schemes on grid B1, which has four
times as many nodes. The errors in the drag components from the three remaining
schemes are greater than two percent, even on grid Bl.

Closer inspection of the solutions reveals that the lower-order schemes lead to
an overprediction of the boundary-layer thickness on the upper surface, consistent
with overprediction of pressure drag and underprediction of friction drag. Figure B.6
shows the skin-friction distribution near the leading edge. The grid A1 results, which
provide an accurate reference solution, show every fourth grid node. The higher-
order results on grid C1 are in good agreement with the reference solution, while the
second-order result significantly underpredicts the maximum near the leading edge.
The higher-order solution is also more accurate along the upper surface where the
error in the second-order results persists all the way to the trailing edge. Figures B.7
and B.8 show the boundary-layer profiles at 85% chord on the upper surface computed
on grid C1. The higher-order scheme is superior to the other schemes, illustrating
the importance of raising the accuracy of the discretization of the viscous terms. The
higher-order results are virtually grid independent, even on grid C1. Note that the
second- and higher-order algorithms both use the same numerical dissipation scheme.
Given the accurate results of the higher-order scheme on grid C1, the third-order
matrix dissipation does not appear to contaminate the solution. It is achieving its
goal of producing stability and damping under-resolved modes without introducing
significant error. The error in the second-order results must, therefore, be dominated
by discretization errors of the inviscid and viscous terms. The third-order upwind
results, however, are not much better than the second-order results suggesting that
the discretization error of the metrics and the viscous terms dominate the third-order
upwind results.

4.2.4 Test Case 3 - NACA 0012 Transonic Flow

The results computed using the second- and higher-order scheme with the Baldwin-
Lomax model, on grid family 1, are displayed in Figure B.9. The higher-order dis-
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cretization produces the smallest pressure drag error on grid C1, but is nevertheless
well in excess of two percent. One source of this error is the first-order dissipation
introduced near the shock wave. Both schemes produce lower pressure drag errors
when run without any limiting, i.e. without any first-order dissipation, but visible
oscillations result. Another source of error with the matrix dissipation scheme (thus
affecting the higher-order algorithm as well) is the requirement of nonzero values of V}
and V; in Equation 3.15 for transonic flows. This leads to some of the overdissipation
characteristic of the scalar artificial dissipation scheme. For example, the results in
Figure B.9 were obtained using V; = 0.025. Reducing V; to a value of 0.015 reduces
the pressure drag result for the higher-order algorithm on grid C1 from 0.00896 to
0.00889. The corresponding error in those values, compared to the solution on grid
Al, is 3.9% and 3.1% respectively, a 20% reduction in error. Reducing V; even fur-
ther to 0.005 does not improve the result. Although the relative reduction in error is
substantial, the goal is to produce results, on grids with similar densities as grid C1,
with errors no greater than two percent.

Adding nodes near the shock, as in grid Cla, does not reduce the pressure drag
error significantly. Figure B.10 shows details of the pressure coefficient on the upper
surface of the airfoil computed on grid Cla. For the grid Al solution, every second
grid point is plotted. The higher-order algorithm produces an improvement in the
shock location and a significant reduction in error in the low pressure region forward
of the shock, with the grid Al solution taken as a reference. The grid A1l results show
a spike at the laminar-turbulent transition point which is not seen on the coarser grid
Cla. The present treatment of transition in the Baldwin-Lomax turbulence model is
slightly grid-dependent and may explain some of the error seen.

The added nodes near the shock wave do little to reduce the pressure drag error.
The numerical error associated with the added first-order dissipation in that region is,
therefore, not the largest source of error. Results using the Spalart-Allmaras model
produce similar error levels, indicating that the error is not likely to be related to
discretization errors within the turbulence models. It turns out that a small recir-
culation region exists just aft of the shock location. More nodes are needed in the
direction normal to the airfoil surface to adequately resolve the boundary layer in that
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region. The second family of grids, outlined in Table 4.2, addresses this issue. Using
grid family 2 reduces the pressure drag error significantly. Results for this test case
using the Spalart-Allmaras model on grids A2, B2, and C2 are found in Figure B.11.
The numerical errors, for the higher-order algorithm, have all been reduced to less
than 2% on grid C2, which has less than 15,000 nodes.

4.2.5 Test Cases 4 and 5 - RAE 2822 Transonic Flow

Figures B.12 and B.13 show the lift and drag components computed using the
Spalart-Allmaras model on grid family 2. The results indicate that the higher-order
discretization leads to a significant reduction in the error relative to the second-
order scheme, generally producing solutions on grid C2 which are accurate to within
2 percent. The exception is the pressure drag for case 5, for which the higher-order
solution has an error of nearly 4 percent, and the solution computed using the second-
order scheme has an error just over 5 percent. Using third-order dissipation alone
only marginally improves the pressure drag results indicating that using first-order
dissipation near the shock is not the source of this error. It appears that there is
insufficient grid resolution in the vicinity of the separation bubble at the shock even
for the higher-order scheme. Despite the small improvement in pressure drag erroar,
closer examination of local flow characteristics indicates that the higher-order solution
is significantly more accurate than the second-order solution. Figure B.14 shows a
portion of the computed pressure coefficient distribution on the upper surface for case
5. The solution using the higher-order discretization on grid C2 lies much closer to
the grid A2 solution than that computed using the second-order scheme on grid C2.
Boundary-layer profiles confirm the improved accuracy of the higher-order scheme.
Figure B.15 shows the computed profiles on the upper surface at 95% chord. The
error in the velocity profile computed on grid C2 using the second-order scheme is

quite large, while the error in the higher-order results, though visible, is small.
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4.2.6 Accuracy of viscous terms, grid metrics

and force integration

In the context under consideration here, namely the solution of the thin-layer
Navier-Stokes equations using a generalized curvilinear coordinate transformation,
the extension of all terms to higher order can be accomplished very efficiently (see
Section 4.2.7). In other contexts, such as the full Navier-Stokes equations or finite-
volume algorithms on unstructured grids, the costs associated with higher-order ap-
proximations can be substantial [6]. Thus it is instructive to examine the relative
importance of raising various terms to higher order.

The spatial discretization of the entire code can be broken down into various
components, as outlined in Section 3.2. In this section, all terms relating to viscosity
and turbulence are referred to as viscous terms. It is our experience that the most
accurate results are obtained when all the components are treated in a similar fashion,
that is, the order of accuracy of all the components of the discretization is consistent.
Mixing higher-order inviscid terms with low-order* metric terms can lead to large
truncation errors. Similarly, mixing higher-order metrics with low-order viscous terms
can also lead to erroneous results. The problem is magnified when dealing with cases
involving flow discontinuities such as shocks. Hence, it can be difficuit to determine
exactly how effective any one component of the discretization is at reducing numerical
error since the result can behave in a very nonlinear fashion. Nonetheless, we attempt
to address some of these issues here.

In Section 4.2.3, we compared various discretization schemes for a subsonic case,
including a third-order upwind scheme. It can be shown that the third-order upwind
treatment of the inviscid terms is equivalent to a fourth-order central scheme with
a third-order dissipative component, much like the higher-order algorithm described
here [69]. The third-order upwind scheme is combined with second-order grid metrics,
viscous terms, and force integration. Figure B.16 shows a portion of the upper surface
pressure distribution, for case 4, obtained using the Baldwin-Lomax turbulence model
on grid Cla. For the grid Al solution, every second point is plotted. Compared to the

$“Low-order” referes to orders of accuracy of second-order or lower



Section 4.2. CYCLONE Results a3

third-order scheme, the higher-order discretization produces a significant reduction in
error over the first 20% chord. The result provides further evidence of the importance
of raising all components of the discretization, including the grid metrics, to a higher-
order of accuracy.

In [16], De Rango and Zingg, carried out a study of the effect on accuracy of raising
the viscous terms and integration algorithm to higher order. We now summarize and
expand upon those results. First we address the relative importance of the accuracy
of the viscous terms. Plotted in Figure B.17 are results for case 1 using the higher-
order scheme with second- and fourth-order centered treatments of the viscous terms.
Grid family 1 is used. Note that higher-order metrics and force integration are used
for both sets of results. The lower-order treatment of the viscous terms surprisingly
improves the lift results. The error in the original higher-order lift result, however, is
less than one percent on grid C1 and is considered sufficiently accurate. The second-
order viscous terms have the opposite effect on the accuracy of the individual drag
components. In fact, the error on grid C1 doubles when the lower-order viscous terms
are used.

Although the results vary from case to case, the higher-order viscous terms gener-
ally account for roughly 10% of the error reduction associated with the higher-order
discretization relative to the second-order scheme. Using case 2 as an example, the
second-order algorithm produces an error in pressure drag on grid C1 of roughly 47%
in comparison with the grid A1 solution. Using the higher-order algorithm, this error
is reduced to 1.3%. If lower-order approximations are used for the viscous terms, the
error increases to 4.6% percent. Although the higher-order viscous terms account for
a relatively small fraction of the overall error reduction, they reduce the error by a
factor greater than three in this example.

Velocity boundary-layer profiles for case 5 were shown in Figure B.15. In Fig-
ure B.18, we add to those results the velocity profile computed using the higher-order
discretization with the viscous terms discretized using the second-order scheme. Con-
sistent with the previous example, raising the viscous terms to higher order accounts
for roughly 10 percent of the overall error reduction.

For some transonic cases, using a lower-order approximation for the viscous terms
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Shear-Stress Grid B1 Grid C1

Approximation % Error % Error
higher-order 04 14
2nd-order -1.5 -7.9

Table 4.3: Effect of shear-stress approximation on accuracy of Cy, using higher-order
solution for case 1 (Baldwin-Lomax model). Note: % error is relative to the value
computed using the higher-order algorithm on grid Al, which is Cy, = 0.005277.

Shear-Stress Grid Bl Grid C1
Approximation % Error % Error
higher-order 0.0 0.2
2nd-order -1.8 -94

Table 4.4: Effect of shear-stress approximation on accuracy of Cy, using higher-order
solution for case 3 (Baldwin-Lomax model). Note: % error is relative to the value
computed using the higher-order algorithm on grid Al, which is Cy, = 0.004967.

can have a more adverse effect on the accuracy of the higher-order algorithm. Friction
drag results for case 3 are shown in Figure B.19. Compared to the grid Al solution,
the skin friction obtained on grid Cl1, using second-order approximations for the
viscous terms, is in error by approximately 10%. The error is not reduced significantly
even using grid Bl which has four times as many nodes. This is a good example of
the nonlinear effects discussed earlier when mixing components of different spatial

accuracies.

The computation of friction drag is a two-step process, the first being the com-
putation of shear stress given by Equation 3.39. The second involves the actual
integration of the surface shear-stress distribution. The accuracy of the shear-stress
computation has a much larger effect on the accuracy of the computed friction drag
than the integration of the shear-stress distribution. Friction drag results for cases
1 and 3, for the higher-order solution using the higher-order integration routine, are
shown in Tables 4.3 and 4.4. The effect on accuracy using second- and fourth-order
approximations {Equations 3.40 and 3.41}) for the normal velocity derivatives in Equa-
tion 3.39 is examined. Third-order approximations are used for the grid metrics on
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the airfoil surface. The results clearly indicate the importance of treating most terms
in a consistent manner. Similar results to the second-order results are obtained if
fourth-order approximations are used for the velocity derivatives and second-order
approximations are used for the surface grid metrics. The second-order three-point
one-sided difference operator (Equation 3.41) typically used for grid metric terms and
differencing on the surface is found to be particularly susceptible to error from grid
stretching.

For the cases studied, the difference in integrated lift and friction drag values
between the second- and third-order integration routines is small. The third-order
integration routine improves the integrated pressure drag values by 0.5-1% of the
reference Cy4, obtained on grid Al.

4.2.7 Convergence rate and computational efficiency

Density residual convergence histories for grid C, using the Spalart-Allmaras tur-
bulence model, are displayed in Figure B.20. Cohvergence using the Baldwin-Lomax
model is similar. In all cases, the two algorithms converge similarly for the first three
to four orders of magnitude reduction in residual, and the higher-order algorithm
converges somewhat more slowly after that. Figure B.21 shows the drag convergence
histories for the four cases. Convergence of lift and drag is typically achieved after
about four orders of residual reduction on grid C, so the extra cost associated with
the higher-order algorithm is quite small.

For the solution of the thin-layer Navier-Stokes equations using a generalized
curvilinear coordinate transformation, the extension of all terms to higher order can
be accomplished very efficiently. The cost per grid node per iteration is increased by
about 6%. Since the lift and drag convergence rates are not significantly affected, the
overall cost increase on a given grid is about 6% relative to the second-order algo-
rithm. Hence the computational effort required to achieve a given level of accuracy
is greatly reduced using the higher-order algorithm. In some cases, equivalent accu-
racy is achieved in less than 1/16 the expense of the second-order algorithm, which
requires a much finer grid.
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Element Upper Lower

Surface Surface
Slat 5.00 -
Main 0.97 11.0
Flap 2.70 99.3

Table 4.5: Transition locations for case 6 given as percentage of elemental chord.

4.3 TORNADO Results

4.3.1 Overview of Test Case and Grid Details

The test case examined is Case A-2 from AGARD Advisory Report No. 303. Wind
tunnel data were measured for a two-dimensional supercritical airfoil with high-lift
devices and the model designation is NHLP 2D. These data were obtained during the
1970’s as part of the National High Lift Programme in the United Kingdom. The case
selected for examination here is L1T2 which includes a 12.5%c leading-edge slat and a
33%c single slotted flap, where ¢ is the chord length of the nested configuration. The
slat is located in the optimum position at an angle of 25 degrees and the flap angle
is 20 degrees. This geometry, which is typical of a take-off configuration, is shown
in Figure B.22. TORNADO results for this case were first presented by Nelson et
al. [38]. It should be noted that in reference [38], the blunt trailing edge of the flap
is closed by rotating the upper and lower surfaces through equal angles. The sharp
points on the lower surface of the slat and main element are actually very small blunt
edges. The same coordinates are used in this study with the exception that the lower-
surface blunt edges of the slat and main element (not referring to the trailing edges)
are also closed to a single point. A full set of coordinates for this case can be found
in Appendix D.

The flow conditions for this case, test case 6, are set at My = 0.197, a Reynolds
number of 3.52 x 10%, and an angle of attack of 20.18°. The transition points are
tabulated in Table 4.5. The transition for the lower surface of the slat is fixed to
the third node from the sharp point between the slat leading and trailing edges as
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Grid Number of
Nodes

A 255,295

B 183,721

C 126,185

D

E

72,837
51,749

Table 4.6: Multi-block grid densities.

illustrated in Figure B.23.
Five grids are used in this study, each of them generated independently with an

H-mesh topology. Generating a sequence of grids, suitable for multi-element cases, in
the fashion described in Section 4.2.1, would make the grid density of a grid A far too
impractical. The solution domain for each grid is divided into 27 blocks. The same
domain decomposition is shared amongst all five grids and is shown in Figure B.24.
The grids are labeled as grids A through E. The grid densities are given in Table 4.6.
Grid densities of individual blocks are outlined in Tables C.1-C.5 in Appendix C.
Given that this is a high-lift case, the far-field boundary is placed at a distance of
24 chords from the airfoil surface, twice the grid extent used for the single-element
cases. The grid cells at the far-field boundaries are approximately 1 chord in length.
Individual block detail is provided for two reasons: 1) to allow for precise reproduction
of the grids by other researchers in the future, and 2) to give the reader a detailed
account of the distribution of the grid points amongst the three elements, noting that
the grid density required for accurate results is different for each element.

The slat requires special attention. At an angle of attack of 20.18°, the pressure
gradients near the leading edge are quite large. In fact, in Nelson et. al. [38], it
was shown that at high angles of attack, very high flow gradients exist outside the
boundary layer near the leading edge of the slat. Hence, given the finite number
of grid points available, it is felt that grids B through E require a cluster point in
that region. The cluster point is located at approximately 14.7% along the arclength
from the begining of side 1, block 2, to the trailing edge on the upper surface. It is
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Drag Higher-order Second-order
Component | Slat | Main Element { Flap Slat | Main Element | Flap

Cq, -0.71975 0.54096 0.22272 | -0.71929 0.54082 0.22311

Cy, 0.00196 0.00683 0.00189 | 0.00193 0.00672 0.00184

Table 4.7: Elemental drag components on grid A for case 6.

located just after the leading edge, with a spacing of 2 x 10~*¢. The cluster point was
not used in grid A both to avoid any influence on the reference solution from cluster
points, and since the large number of points placed on the slat makes cluster points
unneccesary for this grid.

Trailing-edge clustering is set at 5 x 10~%c for all three elements. The trailing-edge
clustering is kept constant for all of the grids. Given that this spacing is the smallest
of those used in the single-element cases, it is unlikely to introduce any significant
numerical error. The off-wall spacing is also kept constant for all five grids at 10-¢
chords.

4.3.2 Test Case 6 - High-Lift Subsonic Flow

The higher-order discretization schemes implemented in CYCLONE and TOR-
NADO are identical with one exception. The original second-order treatment of the
diffusive terms within the Spalart-Allmaras turbulence model is used. The higher-
order treatment of those terms in TORNADO presented stability problems which are
likely related to the handling of block interfaces. The Spalart-Allmaras turbulence
model was exclusively used for this test case. Values for the limiters, V; and V;, used
in Equation 3.15 in the matrix dissipation scheme were set to 0.01.

The results for this test case are plotted in Figure B.25. The errors in lift coefficient
are small. Nevertheless, similar to the results for test cases 4 and 5, the higher-
order scheme, coupled with the Spalart-Allmaras turbulence model, predicts lift more
accurately than the second-order scheme on grids D and E. The errors in the drag
components are much larger. Compared to the solution on grid A, the errors in the
drag components for the higher-order scheme on grid D are less than 3% while the
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Algorithm Slat  Main Element  Flap  Complete Airfoil
higher-order 2.9 5.1 2.3 10.3
second-order  98.9 -34.7 -8.8 55.4

Table 4.8: Elemental pressure drag error in counts on grid D for case 6. (Note:
One count is equivalent to 0.0001 units in drag. The count errors are relative to the
solution of each respective algorithm on grid A - see Table 4.7)

Algorithm Siat  Main Element  Flap  Complete Airfoil
higher-order 0.2 -0.3 -0.5 -0.6
second-order  -1.0 -8.6 -3.9 -13.5

Table 4.9: Elemental friction drag error in counts on grid D for case 6. (Note: One
count is equivalent to 0.0001 units in drag. The count errors are relative to the
solution of each respective algorithm on grid A - see Table 4.7)

error in the second-order results for both pressure and friction drag coefficents on
grid D exceeds 12%. The error in the drag components for the second-order scheme
approaches 22% on grid E while the error in the higher-order result is still well behaved
at approximately 5%.

Individual drag components were plotted for single element cases in Section 4.2
to avoid cancelation of errors between pressure and friction drag. When analyzing
solutions about multi-element airfoils, the same care must be taken to avoid cance-
lation error between elemental pressure and friction drag. For example, the pressure
drag is negative on the slat and positive on the remaining two elements. Elemental
pressure and friction drag values for solutions on grid A are presented in Table 4.7.
The results in Table 4.7 provide a reference for the elemental-drag errors presented
in Tables 4.8 and 4.9 for solutions on grid D. A benefit of analyzing the data in this
fashion is that it provides the reader with some insight into which areas of the grid
need to be refined if further improvement in accuracy is desired. The pressure-drag
error on the slat and main element for the second-order solution is quite large. The
opposite sign of the errors lead to significant cancellation error as well. The elemental
pressure- and friction-drag error for the higher-order solution is several times smaller
than those produced by the second-order algorithm.
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Grid G Ca, Ca,
AA 4074 0.04398 0.01070
A 4074 0.04393 0.01068

Table 4.10: Higher-order results for case 6.

To ensure that the off-wall spacing of 10~¢ chords is sufficiently small enough not
to introduce significant numerical error, we introduce grid AA. Grid AA is identical
to grid A except that the off-wall spacing is reduced to 5 x 10~7 chords. The higher-
order results on grid A and AA are shown in Table 4.10. The difference between the
two solutions is negligible indicating that the original choice for the off-wall spacing
is adequate. For all grids, the y* value at the first point from the surface is less than
one, having a maximum of 0.8 on the main element for grid E.

Figure B.26 shows the experimental and computed surface pressure distributions
for the NHLP airfoil. The computed result, using the second-order scheme on grid A,
is very accurate, comparable to those presented by Nelson et. al. [38], using a some-
what different grid configuration. A portion of the upper surface pressure distribution
of the slat is shown in Figure B.27. The second-order scheme, on grid D, does poorly
at computing the minimum pressure. Similar results are found on the main element
as well.

Figure B.28 shows boundary-layer velocity profiles at the trailing edge of the flap.
For the second-order solution on grid A, every third grid point is plotted. The profiles

can be divided into four regions:

1. the first 3% of chord above the flap surface corresponds to the flap boundary

layer;

2. the region between 3% and 10% of chord corresponds to the wake from the main

element;

3. the region between 10% and 18% of chord corresponds to the wake from the

slat;
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4. beyond 18% of chord above the flap surface, the flow slowly returns to free-

stream conditions

Given the superior results presented thus far for the higher-order scheme, the higher-
order result on grid A is taken as the reference solution. Region 1 appears to be
adequately resolved for both discretization schemes, even on grid D. In region 2, the
higher-order result on grid D is more accurate than the second-order result on grid
A, a grid with more than 3 times as many nodes. In region 3, the error in the second-
order result on Grid D is quite large and increases in region 4. These slower velocities
in the wake explain the larger drag values reported earlier. The second-order result on
grid A and the higher-order result on grid D provide similar accuracy in regions 3 and
4. The second-order grid A result is slightly better in region 3 while the higher-order
grid D result is slightly better in region 4. Nonetheless, the higher-order scheme is in
excellent agreement with the reference solution using a grid with only 73,000 nodes,
one third of the grid density of grid A.

4.3.3 Convergence rate and computational efficiency

Density residual and drag convergence histories for grid D, are displayed in Fig-
ure B.29. As in the single-element cases, the two algorithms converge similarly for
the first three to four orders of magnitude reduction in residual, and the higher-order
algorithm converges somewhat more slowly after that. In this case, the higher-order
scheme takes approximately 33% more iterations than the second-order scheme to
converge to within 0.2% of the converged drag. The higher-order algorithm, however,
produces a solution that is far more accurate on grid D with the second-order scheme
requiring at least 3 times as many nodes to produce similar accuracy.

The added computational cost of the higher-order scheme in TORNADO is similar
to the added cost in CYCLONE. Compared to the second-order algorithm, the cost
per grid node per iteration is increased by about 7%, with no increase in memory
usage. This is an important factor when considering extending TORNADO to 3D
applications. The higher-order scheme produces accurate results on relatively coarse
grids, thereby reducing memory requirements and computational costs. Table 4.11
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Grid Number of  Memory Used

Nodes (megabytes)
A 255,295 102
B 183,721 75
C 126,125 54
D 72,837 34
E 51,749 26

Table 4.11: Memory requirements for TORNADO.

summarizes the memory requirements of TORNADO for the grid densities used in
this study. The higher-order scheme produces results on grid D within three percent
of the solutions on grid A while only using 34 megabytes of memory.



Chapter 5
Contributions and Conclusions

We have presented a stable, accurate, and robust higher-order algorithm for aero-
dynamic flows, and, furthermore, we have compared its efficiency with that of a well-
established second-order algorithm. The higher-order algorithm was implemented
in both a single- and multi-block solver. With a few exceptions, all components of
the spatial discretization, including the convective and viscous terms, the numerical
boundary schemes, the numerical dissipation, and the integration technique used to
calculate forces and moments, have been raised to a level of accuracy consistent with
third-order global accuracy. The turbulence models were also addressed, with most
of the terms raised to a higher order of accuracy. A detailed quantitative evaluation
of the higher-order algorithm was performed with emphasis on accuracy, robustness,
and computational cost.

Grid convergence studies demonstrate that the new algorithm produces a sub-
stantial reduction in the numerical error in drag in comparison with the second-order
algorithm for both subsonic and transonic flows. The results show that the higher-
order algorithm produces a smaller error on a given grid than the second-order algo-
rithm produces on a grid with several times as many nodes. Hence the higher-order
algorithm can provide equivalent accuracy with a large reduction in computing ex-
pense. For example, using the higher-order discretization, numerical errors of less
than 2-3% can be obtained in the computation of lift and drag components for grids
with less than 15,000 nodes for single-element cases and less than 73,000 nodes for a

63
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three-element airfoil. The second-order algorithm required 3-4 times as many nodes
to achieve similar accuracy.

Compared to the second-order algorithm, the increased cost per grid node per
iteration, when using the higher-order algorithm, is approximately 6-7%. There is no
penalty in memory usage. For single-element cases the lift and drag convergence rates
were very similar for both discretization schemes, while the higher-order algorithm
converges approximately 33% slower for the multi-element case. The second-order
algorithm, however, requires 3-4 times as many nodes as the higher-order algorithm
to produce similar accuracy. Both schemes prove to be equally robust.

A key aspect of the higher-order algorithm is the consistency of the discretiza-
tion with respect to accuracy. Accuracy was significantly compromised when low-
order and higher-order terms were mixed in some areas of the discretization. In
this work, almost all approximations are consistent with third-order global accuracy.
The exceptions are the first-order treatment of the convective terms in the Spalart-
Allmaras turbulence model, the second-order differences used for the diffusive terms
in the Spalart-Allmaras model in TORNADOQO, and the first-order numerical dissi-
pation added near shocks. The grid convergence studies provide an accurate means
to compare the discretization schemes. Comparison of surface pressure and velocity
boundary-layer profiles on several grids revealed a number of items:

e [t was shown that accuracy was not adversely affected by the first-order terms.
In fact, very accurate results were obtained for transonic cases without clus-
tering the grid near the shocks despite using first-order dissipation to capture
shocks.

o The grid metrics play a critical role in achieving accurate results. The poor re-
sults from the third-order upwind scheme indicate that the metric terms should

be raised to the same level of accuracy as the convective terms.

o The higher-order discretization of the viscous terms accounted for approxi-
mately 10% of the overall error reduction achieved with the higher-order al-
gorithm relative to to the second-order scheme.
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® Prior to this work, whether or not more accurate post-processing was necessary
to obtain accurate force and moment coeflicients needed to be addressed. The
higher-order computation of shear stress proved critical to the accurate predic-
tion of friction drag. The higher-order force integration provided only a small

benefit for the cases examined.

5.1 Recommendations for Future Work

This investigation suggests a number of avenues for future work, including the
following:

@ Solutions to various flows were presented with numerical errors of less than 3%
on relatively coarse grids. It is not clear whether it is necessary to progress to
even higher orders of accuracy. The next step should be to determine, and ad-
dress if practical, the largest remaining source of numerical error. For example,

the effect of grid singularities on solution accuracy should be investigated.

e Grid convergence studies were used to compare the higher-order algorithm to
a number of discretization schemes, all of which are applicable to solving the
Navier-Stokes equations on structured grids. It would be informative to see
similar studies to assess the relative accuracy of various discretizations on un-
structured grids.

¢ The ability of the higher-order algorithm to obtain accurate results on relatively
coarse grids has been demonstrated. Extension to three dimensions should be

carried out.

e The higher-order algorithm should be combined with modern convergence ac-
celeration techniques such as multigrid or GMRES.

e There remains a need for efficient error estimation techniques.
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Appendix A
Circulation Correction

One generally assumes that the flow at the far-field boundaries is uniform and
meets free-stream conditions. If those boundaries are placed close to a lifting air-
foil, however, disturbances from the airfoil surface may not have settled down to
free-stream conditions by the time they reach the far-field boundaries. Hence, im-
posing free-stream conditions under those circumstances would undoubtedly affect
the physics of the flow. One way to alleviate this problem is to place the far-field
boundaries very far away from any lifting bodies. That solution is impractical since it
would require many more grid nodes. Pulliam {41} shows that boundaries as much as
96 chords away are needed to minimize the effect of the boundaries on the accuracy
of the solution. Following the work of Salas et al. [51], Pulliam added a compressible
potential vortex solution as a perturbation to the free-stream velocity giving

BT sin(8)

U= e 2rr[l — M2, sin®(f — a)] (A1)

_ BT cos(f)
UT Yo T it — ME sin?(0 — a)]

(A.2)

where [' = 3Mu,cCy, c is the chord of the airfoil, C is the coefficient of lift, My the
free-stream Mach number, a the angle of attack, 8 = /1 — MZ and 7 and 8 are the
polar coordinates to the point of application on the far-field boundary relative to the
quarter-chord point on the airfoil chord line. The speed of sound is also corrected to
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78 Appendix A. Circulation Correction

enforce constant free-stream enthalpy at the boundary as follows:
1
&= (1= 1) (Ho= 563 +D) (A3)

Using this far-field vortex correction, Zingg [66] was able to produce very good results
in drag on grids with a grid extent of 12 chords. The results were compared to
solutions obtained on grids with far-field boundaries set at 96 chords.
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Figure B.1: Error in force integration algorithm. Nate: error is realtive to analytical
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Figure B.2: Airfoil geometries and sample grids used with CYCLONE.

81



82 Appendix B. Figures

0.6874 v Y v Y i n

0673 v
a2t

067 |

Un Coefticent

o.060 F
0868
0.667 +
L {
a.085

0 1e05 2005 0056 4606 5006 Ge-05 7e-05 Ba-05
N

(a) Gt

o'm..-__—__.—__—_._——/"

a0 - » - - A > -~
0 1005 2005 3005 4005 5605 005 7e0G 8e05
N
(b) Cq,
G.0054 ——— -r

Friction Drag Coefficien
9

Second-order —o—
0om? | Hgherorder —w—

0 1605 2005 3¢05 405 5e05 Ge-05 7e06 8e-05
N

(c) Cq,

Figure B.3: Grid convergence study for case 1 using grid family 1 (Baldwin-Lomax
model).



83

LY P ———

Q857 ¢+ ——

aess ]

Q655
g&s"
o682 |

0.651 ¢

0.65

0 1005 2005 3605 4605 5005 6e-05 7e-05 8205
™

(a) G

Friction Drag Coefficiem

O Te05 2005 3045 4605 5005 Ged5 Teds 8e0S
UN
(C)Cd,

Figure B.4: Grid convergence study for case 1 using grid family 1 (Spalart-Allmaras
model).



84 Appendix B. Figures

1.3% —— ~— v r -
Second-griet —o—
133 ¢ CUSP —a—
Third-order upwind —8——
1.325 | Higher-order —x—
1R¢
g .05 ¢
131 b
5 1.305 T
13F
1.296 |
129 . . — N .
0 1006 2005 Je-05 4005 Se-05 Ge-05 7e-05 8005
L
(3 G
a2 —r v
u.onsL CUSP —a—
Third-orer upwing —@-—
o1t | Higher-order —n—
g 00106 | Pres
a0t p
ga»
2 ame |
.ooms | J
o008 + it 4

0 1e05 2005 3005 3005 5406 605 706 Be-05
N

(b) Cq,

|

Friction Drag Coefficiert

0 1005 2005 305 4005 5¢-06 0e05 7¢05 8e05
m

(C) Cd;

Figure B.5: Grid convergence study for case 2 using grid family 1 (Baldwin-Lomax
model).



85

0035 ° Second-arder - Grid A3
N U e Second-grder - Grid C1
0.030 Higher-order -Grid C1

. o

-0.005 v
o S B S S U PISN |
] 601 0.02 0.03

Figure B.6: Skin-friction distribution near leading-edge, case 2 (Baldwin-Lomax).

0.1

0.09
o Second-arder - Grid At

— — — Second-order - Grid C1
.............. cuspP - Grid C1
—_————— Third-order upwind - Grid C1
Higher-order - Grid C1

=
&

o
Q
~

o
>

o ©
8 %

f'll'llll'llll"lllllIII'IIIl'lIlllIIIllllll'llll'

Distance From Airfoil (chords)
o
o
(4]

o
Q
[

0 o1 02 03 04 05 06 07 08 09
Nondimensional Velocity

i 11

Figure B.7: Boundary-layer velocity profiles on the upper surface at 85% chord, case
2 (Baldwin-Lomax).



86 Appendix B. Figures

50 r 4
3 -~ -
= :: P .
- o  Second-order - Grid A1 il
- — — — Second-order - Grid C1 i,
40 vearencererenes  CUSP -GridC1 ::'.
i —_———— Third-order upwind - Grid C1 . g
- ——— Higher-order -Grid C1 i
30
+= }:
0P
10

D
o

Figure B.8: Boundary-layer profiles of u*=2 vs. y*=%f on the upper surface at
85% chord, case 2 (Baldwin-Lomax).



87

0515  Second-onder —e— 1
Higher-order —u—
0514 |
go.sta-
£ s}
o5t |
a1 s . . - .
0 1605 2005 Je-05 4806 S0-05 Se-05 7e05 Be-05
N
{a) Ci
0.0006 v v v —
0.0085 |  Second-order —e— }
Migher-orcler —wr
0.0004 |
0.0083 |
0.0002 |
ganm-
0.000 b
0.0009 |
0.0088 |
0.0087 |

00048 [ Second-order —e—

Friction Dray Coeficient
P
3

Higher-omder —#—
Q.0045
0.0044 P I i
G 105 2005 3005 4005 505 GeO05 7e05 8e0S
N
() Ca,

Figure B.9: Grid convergence study for case 3 using grid family 1 (Baldwin-Lomax
model).



88 Appendix B. Figures

0.8 . Second-order Grid A1
— — — Second-order Grid Cla
0.7 Higher-order Grid Cla
0.6
0.5
”ll.lgl;llllllllllllllL'l\l
.0-40 0.1 02 03 04 0.5

x/c

Figure B.10: Surface pressure distribution for case 3, computed on grid Cla (Baldwin-
Lomax}).



89

Coetficilent
THEITEIT

0 1e06 2005 3005 4e05 5005 6e05 7605
IN

() C
m{w-.- i
Higher-order —w—
0.009 }
§m-
Q.0089 b
go.om-
P |
0.00078 |

0 105 2006 M05 4006 5605 Ce05 7005
N

(b) Cq,

e P

o
Efs

e

- e
REEEEE

Friction Drag Coefficient
o

P
:

I Second-order —e—
Higher-order —#—

T

0 1005 20056 3Je05 4005 505 GeO5 7e05
N

§

(C) Cd f

Figure B.11: Grid convergence study for case 3 using grid family 2 (Spalart-Allmaras
model).



90 Appendix B. Figures

o756
o7s4 |
a2 b
ors b
g 0743 |
5 onsl

Q744 |+

0742

are N . N
0 1e06 205 3605 4005 5005 Gel5 7e06

N
(a) Ct
0.008 v
000798 I Sscondorder —o—
Higher-order ——
Q.00796 >
Q.0079¢ |
0.00792 ¢

Pressure Drag Ccethiciont

o.00m | ]
am. J
000786 |
0.00784 |

0.00782 |
4.0078 ¢

0.00778 . . N
0 1605 2005 2005 4006 5e05 0005 7Ted5
"™
(b) Cq,
0.0083 — - . r
Qm-,___.___———/‘
0.0081 |
ocos }
0.0050 }
gam-
o.0057 |
go.m-
('S
000851  second-order —e—
coosc | Hineromer —e—
00083 ) . , \ .
0 1005 205 3e05 405 5e05 6e05 7ed5
"
(C)C‘f

Figure B.12: Grid convergence study for case 4 using grid family 2 (Spalart-Allmaras
model).



91

arr

0.765
Qe
orssp
a7}

/
i " N N

Q745 b

Lift Coofficient

Q74 >

073 | Second-order —e—
Higher-crder

—r—
Q73 b
ars . . \ . A
q 1006 2006 Je05 4005 5005 6Go05 7e05
N
(a) Ci
0.0222 Yy v
Second-order —o—
g 0.0218 |
0.0218 9
g 0.0214 |
Pl |
o.qQ2t -
Q.0208 —e - el
L] 105 20068 06 405 5005 OeQ5 Tel5
N
(b) Cq,

a.aos

2.0060 _____._______._-r-—-—'—""—'

Fricion Drag Coefficient
BEREES

Q0082 |  Second-order —&—

Higher-order —x—
0.0051 |
a5 v v ~ " y
[+] 1608 2005 Je05 4de05 5005 Ge05 7e05
N
(C) Cd!

Figure B.13: Grid convergence study for case 5 using grid family 2 (Spalart-Allmaras
model).



92 Appendix B. Figures

o Second-order Grid A2
- = = = Second-order Grid C2
Higher-arder Grid C2

~0 0.1 02 03 04 05 06 07
x/c

Figure B.14: Surface pressure distribution for case 5, computed on grid C2 (Spalart-
Allmaras model).



93

0.06 -
[ |
- o Second-order Grid A2
— 0.05 — — — - Second-order Grid C2
3 - Higher-order Grid C2
S [
S 0.04 1~
g X
=z R
£ 0.03
9 .
w L
g 002f
S i
@ i
Q .
001}
0 ’ 1 1 I l_l 1 1 l 1 X 1 ¢ L] 1 { 1 l } t ' 1_]
0 0.2 04 0.6 0.8 1

Nondimensional Velocity

Figure B.15: Boundary-layer profile for case 5, upper surface at 95% chord (Spalart-
Alimaras model).



94 " Appendix B. Figures

o Second-order Grid A1

———— Third-order upwind Grid C1a
06 Higher-order Grid C1a
0.5
04
EYE TEENE IENYE PUEYE INTNE FRYEE FEwEs B\
03761 02 03 04 05 06 07
x/c

Figure B.16: Surface pressure distribution for case 4, computed on grid Cla (Baldwin-
Lomax model).



0.674

95

0673
0672 |
ae7 |
g 067 ¢
0088 |
0.008

0.867 |
0888 -

Q885

2-Order VISCOUR IS~

-
go.
e

QoS

Q

-
BRE

o

Friction Drag Coetficient
[

i i

0 105 2005 M05 4005 5005 6e06 7a05 8e-05

1005 2005 38-05 4005 Se-05 Ge05 7e-05 Be-05
N

(@ G

20500880 VIECOUS 1OMTS — e
Athvorder viscous terms —w— /
[ /

0 1e05 2005 3005 4e-056 Se-05 O0r05 7e05 0e05
™

(b) Cq,

[ 2nG-Ordar VISCOUS e —4— 4
A-Ordar VisCous terms —#—
3 4

N

(c) C‘ y

Figure B.17: Effect of viscous terms on accuracy of higher-order algorithm for case 1

(Baldwin-Lomax model).



96 Appendix B. Figures

006
i )
0.05 [ o Second-order Grid A2
~ F — — - — Second-arder Grid C2
g - Higher-order Grid C2
o [ - Sacond-order viscous tems Grid C2
£
o 004
£ X
< A
£ 0.03 -
<] N
L. 3
8 -
2 0.02 N
o
@ [
Q L
001 p
0 ) I8 lJ_ s 3 1 . 1 T I 2 1 2 Li 1 1 1 2 .
0 0.2 04 0.6 0.8 1

Nondimensional Velocity

Figure B.18: Boundary-layer profile for case 5, upper surface at 95% chord (Spalart-
Allmaras).

0.0085 v v v v v v R
20wd-order viscous (Hms —a—
4th-order viscous tarms. ~—p—

0.0054

0.0053 |

0.0052 |

0.0051 ¢

Friction Drag Coefficlant

il
*% POy «
b L3

0.0049

0 te05 2805 3e05 4005 Se-05 6e05 7¢05 8e05
N

Figure B.19: Effect of viscous terms on accuracy of higher-order algorithm for case 3
(Baldwin-Lomax model).



97

1008

Density Residual

1e-08

Denstty Residual

te10 p

te-11 ¢

1e12 a — P " 1812 " A N i
SO0 1000 1500 2000 2500 3000 3500 4000 4500 S000 G 500 1000 1500 2000 2500 3000 3500 4000 4500 S000

’ Reratons Rorations
{a) Case 1 - Grid C1 (b) Case 2 - Grid C1
0.0001 —e— , — Q0001
1006 | Highor-ondes —— 1008
1e08 b J 1008
i warf : % te7 ]
1008 | T tece
il o
Te-10 L 110 |
111 } 1 1e11
e R B R ER e e o vn e e o e e o
Renations Rerutions
{c) Case 3 - Grid C2 (d) Case 4 - Grid C2

Figure B.20: Residual convergence histories (Spalart-Alimaras model).



98

a0

ams

0013

2012

0011

Drag Coefficient

Qo1

0.008

0.008

0 500 1000 1500 2000 2500 000 3500 4000 4500 5000
Rerations

(a) Case 1- Grid C1

0.02¢

a2

=
g ane

Q014

am2

aogt ®

500 1000 1500 2000 2500

(c) Case 3 - Grid C2

Appendix B. Figures

Qo0s

0.045

0.04

-1+ <]

0.@s5

DOrag Coetficiont

co2

ans

Ao, s

ot A N N N .
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Nerstions

(b) Case 2 - Grid C1

002 |
g aote
g 00e

0.014 b

Q.02

a0

(d) Case 4 - Grid C2

Figure B.21: Drag convergence histories (Spalart-Allmaras model).



Figure B.22: High-lift test case A2.
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Lower Surface
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Figure B.23: Location of fixed transition point on lower surface of slat for case 6.

Figure B.24: Multi-block decomposition with block number for case 6.
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Figure B.25: Grid convergence study for case 6.
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Figure B.26: Pressure distribution for the NHLP 2D configuration L1T2 (case 6).
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Figure B.27: Pressure distribution on upper surface of slat for case 6.



103

025~
- )
[ . Second-order Grid A /
0.20f- e Higher-order Grid A !
S Second-order Grid D !

Higher-order Grid D

0.1

0.10

Distance From Airfoil (chords)

o
&

o
kllll'll[illf!lllll

rr1t o . . 4t ., .1, 4 |
04 06 08 1
Nondimensional Velocity

o

02

Figure B.28: Boundary-layer profile for case 6, upper surface of flap at trailing edge.
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Figure B.29: Density residual and drag convergence history on grid D for case 6.
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106 Appendix C. Multi-block Grids

Block Block Dimensions (£ x 1)
1 65 x 161
2 222 x 161
3 189 x 161
4 81 x 161
5 65 x 161
6 65 x 97
7 65 x 97
8 57 x 97
9 85 x 97
10 189 x 97
11 81 x 97
12 65 x 97
13 65 x 97
14 65 x 97
15 57 x 97
16 121 x 97
17 77 x 97
18 40 x 97
19 81 x 97
20 65 x 97
21 65 x 77
22 65 x 77
23 57 x 77
24 121 x 77
25 77 x 17
26 81 x 77
27 65 x 77

total nodes 255,295

Table C.1: Block dimensions for grid A.



Block Block Dimensions (£ x 7)
1 61 x 129
2 177 x 129
3 169 x 129
4 65 x 129
5 49 x 129
6 61 x 93
7 53 x 93
8 53 x 93
9 73 x 93
10 169 x 93
11 65 x 93
12 49 x 93
13 61 x 77
14 53 x 77
15 53 x 77
16 109 x 77
17 69 x 77
18 IJBxT7
19 65 x 77
20 49 x 77
21 61 x 65
22 53 x 65
23 53 x 65
24 109 x 65
25 69 x 65
26 65 x 65
27 49 x 65

[ total nodes 183,721

Table C.2: Block dimensions for grid B.
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108 Appendix C. Multi-block Grids

| Block Block Dimensions (¢ x )

1 57 x 109
2 149 x 109
3 141 x 109
4 41 x 109
5 41 x 109
6 5Tx 77
7 45 x 77
8 45 x 77
9 49 x 77
10 141 x 77
11 41 x 77
12 41 x 77
13 57 x 65
14 45 x 65
15 45 x 65
16 89 x 65
17 57 x 65
18 35 x 65
19 41 x 65
20 41 x 65
21 57 x 53
22 45 x 53
23 45 x 53
24 89 x 53
25 57 x 53
26 53 x 53
27 41 x 53

total nodes 126,185

Table C.3: Block dimensions for grid C.
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Block Block Dimensions (€ x 1)
1 49 x 81
2 111 x 81
3 97 x 81
4 41 x 81
5 33 x 81
6 49 x 57
7 33 x 57
8 33 x 87
9 49 x 57
10 97 x 57
11 41 x 57
12 33 x 57
13 49 x 49
14 33 x 49
15 33 x49
16 65 x 49
17 39x 49
18 25 x 49
19 4] x 49
20 33 x 49
21 49 x 39
22 33x 39
23 33 x 39
24 65 x 39
25 39x 39
26 39 x 39
27 33x 39

total nodes 72,837

Table C.4: Block dimensions for grid D.



Block Block Dimensions (£ x 7)
1 42 x 69
2 95 x 69
3 83 x 69
4 33 x 69
5 29 x 69
6 42 x 49
7 29 x 49
8 29 x 49
9 41 x 49
10 83 x 49
11 33 x 49
12 29 x 49
13 42 x 37
14 29 x 37
15 29 x 37
16 55 x 37
17 33 x 37
18 21 x 37
19 33 x 37
20 29 x 37
21 42 x 33
22 29 x 33
23 29 x 33
24 55 x 33
25 33 x 33
26 33 x33
27 9% 33

total nodes 51,749

Table C.5: Block dimensions for grid E.
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Appendix D.

NHLP Multi-element Airfoil Coordinates

X

Y

0.027257
0.020872
0.011227
-0.004398
-0.012387
-0.019165
-0.023010
-0.027407
-0.029561
-0.030276
-0.028458
-0.024626
-0.018779
-0.016801
-0.025502
-0.035312
-0.042159
-0.049070
-0.055921
-0.059094
-0.062121
-0.066375
-0.067787
-0.067082
-0.066222
-0.063378
-0.059606
-0.053544
-0.046321
-0.034245
-0.019484
-0.066512
0.008815
0.014342
0.020072
0.027257

0.020498

0.015563
0.006611
-0.009567
-0.019220
-0.028956
-0.035321
-0.044011
-0.050210
-0.059158
-0.067011
-0.071463
-0.073341
-0.073880
-0.076949
-0.080319
-0.082184
-0.083118
-0.082630
-0.081361
-0.079626
-0.074374
-0.068143
-0.061726
-0.058840
-0.053099
-0.047766
-0.041046
-0.034484
-0.024138
-0.012454
-0.002938
0.007981
0.011734
0.015591
0.020498

Table D.1: NHLP slat coordinates.




X

Y

0.899869
0.871248
0.835977
0.802387
0.766457
0.753478
0.735188
0.729529
0.718889
0.709570
0.701591
0.690283
0.682294
0.676976
0.672987
0.669990
0.673323
0.677314
0.668664
0.634736
0.602137
0.567868
0.534940
0.500681
0.466742
0.432483
0.400213
0.368273

0.017549
0.019768
0.021513
0.022130
0.021215
0.020250
0.018182
0.017310
0.015446
0.013482
0.011279
0.007384
0.003691
0.000089
-0.003902
-0.011123
-0.018802
-0.020700
-0.021464
-0.024607
-0.027781
-0.031354
-0.034498
-0.037632
-0.040175
-0.042089
-0.043302
-0.043775

Table D.2: NHLP Main element coordinates.
... continued on next page
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Appendix D. NHLP Multi-element Airfoil Coordinates

X

0.333683
0.300083
0.267812
0.232882
0.202600
0.167009
0.136738
0.101466
0.084176
0.071125
0.067865
0.061245
0.054724
0.052894
0.048644
0.043553
0.039062
0.037490
0.039193
0.043656
0.048248
0.055930
0.062122
0.072404
0.083746
0.104780
0.117321
0.134553

Y

e

-0.043629
-0.042773
-0.041326
-0.039080
-0.036463
-0.032877
-0.029729
-0.026254
-0.024531
-0.023236
-0.022807
-0.022280
-0.021653
-0.021413
-0.021055
-0.019327
-0.015139
-0.009480
-0.001600
0.006187

0.010875

0.016862

0.020980

0.026895

0.032221

0.040192

0.044177
0.047860

Table D.2: NHLP Main element coordinates.
... continued on next page




X

Y

0.153484
0.168355
0.172915
0.182465
0.203186
0.234227
0.266158
0.301089
0.335030
0.366300
0.401560
0.434490
0.468430
0.499030
0.533300
0.567889
0.599828
0.635427
0.668685
0.701283
0.734552
0.765160
0.799088
0.833345
0.867943
0.899869

0.050622
0.052406
0.052905
0.053971
0.056082
0.058840
0.061187
0.063263
0.064849
0.065896
0.066622
0.066839
0.066555
0.065842
0.064538
0.062624
0.060252
0.057277
0.053304
0.049230
0.044657
0.040154
0.034791
0.029117
0.023183
0.017549

Table D.2: NHLP main element coordinates.
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116 Appendix D. NHLP Multi-element Airfoil Coordinates

X Y

1.214680 | -0.118471
1.193338 | -0.111918
1.151011 | -0.098866
1.123652 | -0.090382
1.097227 | -0.082259
1.058956 | -0.070693
1.034640 | -0.063559
0.996144 | -0.052613
0.967852 | -0.044769
0.953672 | -0.040925
0.940453 | -0.037366
0.926249 | -0.033587
0.917217 | -0.031188
0.909172 | -0.028967
0.905110 | -0.027491
0.901393 | -0.025044
0.900337 | -0.017233
0.907724 { -0.009613
0.915381 | -0.007061
0.920258 | -0.006296
0.926455 | -0.005819
0.930336 | -0.005861
0.937716 | -0.005997
0.941851 | -0.006334
0.950354 | -0.007272
0.960401 | -0.008849
0.971630 | -0.011069
0.977521 | -0.012397
0.989219 | -0.015288
0.995342 | -0.016946
1.001426 | -0.018707
1.020144 | -0.024678
1.034262 | -0.029655
1.063794 | -0.040911
1.097863 | -0.055278
1.125609 | -0.068513
1.155571 | -0.084427
1.183471 | -0.100154
1.214680 | -0.118471

Table D.3: NHLP flap coordinates.





