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A higher-order aigorithm has been dedopeci for cornputingsteady turbulent flow over 

twcdmensional airfoils. The algorithm uses fitôifferences applied through a gen- 

eralized curvilinear coordinate transformation, applicable to single- and multi-block 

grids. Numericai dissipation is added using the matrix dissipation scheme, Thbu- 

lence is modeled using the Baldwin-Lomax and Spalart-Ailmaras models. The various 

components of the spatial discretization, including the convective and viscous terms, 

the numericd boundary schemes, the numerical dissipation, and the integration tech- 

nique used to caiculate forces and moments, have aU been raised to a level of accuracy 

consistent with thirdsrder global accuracycuracy The two exceptions, both of which proved 

not to introduce significant numerical error, are the h t s r d e r  numerical dissipation 

added near shocks and the first-order mnvective temm in the Spaiart-Ailmaras tur- 

bulence model. ResuIts for severaI grid convergence studies show that this globally 

higher-order approach produces a dramatic reduction in the numerical error in drag. 

It can provide equivaient accuracy to a secondsrder aigorithm on a grid with severai 

times fewer nodes. For subsonic and transonic singleelexnent cases, errors of l e s  

than two percent are obtained on grids with ody 15,000 nodes while 4 times as many 

nodes are required for the second-order aigorithm. Similar accuracy is obtained for 

a threee1ement case on gnds with only 73,000 nodes, a third of that required by 

the secondsrder algorithm. The d t s  provide a convincing demonstration of the 

benefits of higher-order methods for practicaI flm. 
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Chapter 1 

Introduction 

In any free-market economy, businesses work diligently to obtain some sort of 

advantage over theh cornpetition. Market dominance is often acbieved by bringing 

a product to market quickly and cheaply. To do so involves efficient product design 

and development. This is certainly true in the commercial aircraft industry where 

the ment decade has seen Bombardier, the first Company to introduce the regional 

jet, go on to play a dominant role in the regional jet industry. 

The process of designing an aircraft has matured greatly since the Wright Flyer 

took its first powered flight in 1903. EarIy on, engineers employed empirical a p  

proaches to solve aerodynamic problems. In the 1950s computationai aerodynamics, 

as a subset of computational fluid dynarnics (CFD), was in its infancy. The compu- 

tation of simple academic flows using linear equations and a few hundred unknowns 

was considered state of the art. But aircraft designs grew increasingly cornpIex and 

so too did the types of flow conditions that needed to be examineci. Designers began 

relying heavily on experiments in wind tunnels. The process was slow and expensive. 

It took almost 20,000 hours of wind tunnel testing to develop the Generai Dynamics 

Fl l l  and the Boeing 747 [27]. Advancing computer capabilities have since enabled 

exceptional growth in CFD. The state of the art has now evolved to the ability to eval- 

nate the flow about complete aircraft codgurations using non-linear equations and 

several million nnknowns. Dependence on wind tunnel testing has been significantly 

reduced with the i n c d  use of CFD. 
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Today's CFD algorithms, however, do have their limits. Designers and engineers 

require computational met hods that are robust , accurate, computationally inexpen- 

sive, and provide a fast tum-around. A substantial portion of the time required in a 

simulation based on the Navier-Stokes (NS) equations is involved in problem setup, 

including geometry definition and grid generation. Solutions to this obstacle are un- 

able to keep pace with advances in computer technology and thus, should be the 

focus of intense research by the CFD community. Equaily chailenging, however, is 

the accurate and cost-effective simulation of viscous flow at high Reynolds numbers 

associateci with fidl scale flight. The time required to compute the solution of the 

steady compressible Navier-Stokes equations for the flow about a complete aircraft 

remains excessive for routine use in aircraft design. Consequently, numerical solution 

techniques applicable to simpler physical models, such as panel methods or inviscid 

solvers incorporating the boundary-Iayer equations, are stili heavily used in the design 

process, despite their limitations. 

There are a number of ways to reduce the solution tirne for solving the Navier- 

Stokes equations. The first is to exploit computer technology to the fullest. Many 

CFD developers have turned to running d i n g  algorithms on massively pardel 

cornputers. Another solution is to improve the iterative method used to achim steady 

state such as modern Newton-Krylov type solvers [401. An alternative approach 

would be to reduce the mesh requirements by irnproving the accuracy of the spatial 

discretization. This allows a reduction in the number of grid nodes required to achieve 

a given lever of accuracy, resulting in savings in both computing time and memory. 

The accuracy of the spatial discretization can be improved by increasing the order of 

accuracy of the discrete operator. The purpose of this work is to use a higher-order 

spatial discretization to improve the efficiency of solving the NavierStokes equations 

for steady aerodynamic flows. in this work, the term "higher-order" is used to indicate 

orders of accuracy higher than second. 
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1.1 Background 

Higher-order spatial discretizations are typicaiiy more computationaUy expensive 

per grid node than h t -  or second-order methods. They require smaller grid densities, 

however, for a given level of accuracy- The increase in the computing expense per 

node is generaiiy outweighed by the reduction in the number of grid nodes needed, re- 

ducing the overaii computing expense. The promise of higher-order methods has been 

recognized for some time, beginning with papers by Kreiss and Oliger [32] and Swartz 

and Wendroff [55]. These authors examineci the application of various finite-ciifference 

spatial schemes to linear first-order hyperbolic equations with periodic boundary con- 

ditions. They demonstrateci the abiiity of higher-order centered schexnes to signifi- 

cantly reduce the number of nodes required to minimize phase speed errors when 

numeridy simuiating the propagation of linear waves. They showed that, for the 

cases studied, there was no signifiant advantage to using accuracies higher tban 

sixth-order. In generaI, as the algorithm accuracy increased, the benefits, in the form 

of reduced grid density requirements, did not offset the added computationai effort of 

the algorithm. Fomberg 1211 performed a similar study of spatial clifference schemes, 

induding the use of fast Fourier transforms (FET). The spatial derivatives of the 

governing equations were replaceci with the FFT scheme, producing very accurate 

ciifference equations. 

Higher-order methods have received considerable use in the numerical solution 

of partial dserential equations. In particular, they have been applied to problems 

invohing wave propagation over long distances. Within the domain of aeronautics, 

they have primarily been used for time-dependent prohlems such as dectromagnet- 

ics 1301 and aeroacoustics [62]. In these disciplines, the grid resolution requirements of 

second-order methods can become excessive, leadiig to impracticd CPU and mem- 

ory requirements. Zingg [67] reviews a number of higher-order and optimized finite- 

difference methods for numerically simulating the propagation and scattering of linear 

waves. 

Another area where higher-order schemes are necessary to make the computation 

feasible is the simulation of transition and turbulence [44,45, 651. Direct Numerical 



4 Chapter 1. Introduction 

Simulation (DNS) of turbulent flow is often not practical in terms of computational 

effort and hardware requirements. An altemate approach that is less computation- 

d y  intensive is Large Eddy Simulation (LES). Ghosal [22], and Kravchenko and 

Moin [31] provide a detailed analysis on the effect of numerical error on the accuracy 

and robustness of LES of turbulent flows. The results illustrate the necessity of us- 

h g  higher-order methods for these types of simulations. In LES, the full turbulent 

field is divided into a set of large-scale or "resolvedn eddies and the small-scale or 

"subgridn eddies. Only the resolved eddies are computed directly while the net eff't 

of the large number of subgrid eddies are approximated by a single subgrid model. 

For accurate simulations, the numerical errors associateci with the large-scaie model 

should be s m d  compareci to the subgrid model. Both references demonstrate that, 

for the cases examineci, the truncation errors associateci with a second-order scheme 

in the l a r g e d e  model, are significantly Iarger than the subgrid term over a wide 

range of wavenumbers. Higher-order schemes are therefore necessary to accuratdy 

resolve the wide range of length scales of turbulence on practicai grids. 

In the disciplines discussed thus far, the use of higher-order methods remains an 

active ~ e a  of research. The application of higher-order methods to steady aerody- 

namic flows, specificaily the solution of the steady Reynolds-averaged Navier-Stokes 

(RANS) equations, has been more limited. Initiaiiy, many RANS solvers used the 

scaiar artificial dissipation scheme presented in (281 to provide the numerical dissipa- 

tion needed for stabiiity. The scaiar dissipation scheme, however, has been shown by 

numerous authors [3,20] to be excessively dissipative in slow moving regions of flow 

for high ReynoIds numbers. This results in contaminated boundary Iayers and over- 

prediction of drag. There is no point in using a higher-order discretization as long as 

the scaiar dissipation scheme is used. The development of upwind schemes [49] and 

matrix artiEcid dissipation [54] was thus critical to the successful implementation of 

higher-order methods. It was shown in [68] that the numerical error introduced using 

matrix dissipation is generally less than the truncation error from a second-order cen- 

tered dSerence operator. With the implementation of these sophisticated numerical 

dissipation schemes, the Ieading source of numerid error became the discretization of 

the convective and diffusive fluxes. To reduce this leading source of error, researchers 
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began implementing higher-order spatial schemes. 

The discretization of the inviscid or convective terms for the RANS equations 

has received considerable attention over the last decade. It is common to combine 

a high-order treatment for the inviscid flux terms with a second-order approxima- 

tion for the viscous fluxes. The higher-order treatment often consists of a third- 

order upwind-biased scheme. Examples of higher-order upwind schemes used in con- 

junction with second-order viscous approximations on structured grids can found in 

[50, 23, 18, 61, 291. 

Compared to standard explicit finite ciifferences, compact schemes offer the ad- 

vantage of using malier stencil sizes to obtain a comparable order of accuracy [33]. 

Tolstykh and Lipavski [58] use third- and Uthader  compact upwind dxerencing 

for the solution of Burgers equation and the 2D compressible NS equations. They 

combine the high-order spatial scheme with GMRES (401 to aid convergence to steady- 

state. AIthough Tolstykh and Lipavski use third-order approximations of the viscous 

t e m  in the solution of Burgers equation and demonstrate the benefits of doing so, 

they elect to use only second-order differencing when solving the Navier-Stokes equa- 

tions. Mahesh [34] introduces a compact scheme applicable to the sdution of the 

Navier-Stokes equations in which both first- and secondsrder derivatives are solved 

simultaueously. The intent is to solve the inviscid terms, consisting of first-order 

derivatives, and the viscous terms, consisting of second-order derivatives, sirnuitane- 

ously. This new scheme was compared to the standard Padé scheme for 6ciency 

and accuracy using Fourier analysis. Unfortuoately, Mahesh only illustrates how the 

spatial scheme can be applied to the NS equations but does not show any solutions. 

Yee (631 formulates a fourth- and sixthsrder compact scherne based on the m r k  

of Abarbanel and Kumar [l]. Compact schemes tend to exhibit better spectral reso- 

Iution compared to their non-compact cousins. They involve, however, a tridiagonal 

matrix inversion which increases the operational count per node. AbarbaneI and 

Kumar [l] proposed a spatialiy fourth-order compact scheme without the associated 

mat& inversion. Numerical experiments showed that their scheme exhibits poor 

shock resolution even with added linear numerid dissipation. In [64, Yee modifies 

the Abatbanel-Kumar compact scheme to be high-m1ution at discontinuities and 
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extends the scheme to a larger class of explicit and implicit high-resolution schemes. 

Yee [63] aIso states that formai extension of the new schemes to include viscous terms 

whiIe maintainhg the same order of accuracy is quite involveci and computationally 

expensive. Yee suggests the option of using standard non-compact second- or fourth- 

order central differencing. Doing so, Yee [63] adds, raises the question as to the 

effect of the inconsistent discretization of the equations on the overall performance 

and accuracy of the final scheme. More ment work where Yee and colleagues exam- 

ine higher-order compact spatial algorithms in the context of TVD and EN0 type 

schemes, including higher-order approximations for the viscous t e m ,  can be found 

in [64]. The application of the higher-order viscous terms are, however, applied to 

DNS simulations and not the type of aerodynarnic flows exarnined in this thesis. 

In [19], Ekaterinaris presents a fourth-order accurate compact spatial discretiza- 

tion for the Euler equations. Aithough we have restricted ourselves to the NS or RANS 

equations thus far, this reference is included here because the higher-order scheme is 

appiied to the diagonal form [43] of the implicit AD1 method of Beam-Whng [8]. 

The work presented in this thesis also employs the diagonalized Beam-Warming fac- 

torization, and a cornparison between the two schemes in future work rnight prove 

useful. Also, unlike many researchers d g  impiicit time-marching rnethods, Eh- 

terinaris shows how to obtain fourth-order accuracy for the impiicit operators. It 

is cornmon to retain low-order accuracy for the implicit operators for simplicity and 

computationai efficiency. But this practice of improper linearization of the discretized 

equations can negatively affect convergence rates to steady-state. 

It is apparent that much of the research on higher-order schemes in the iitera- 

ture concentrates on the application of such schemes to the conmtive terms of the 

NS equations. Very little attention is given to the viscous or turbulence terms. Re- 

searchers seem content to improve the spatiai accuracy of the inviscid terrns of a solver 

whiie using a low-ordered approximation to the viscous terms. The assumption made 

is that the error introduced in the differencing of the viscous fluxes is srnail. AU the 

references presented thus far demonstrate the si@cant benefits offered by higher- 

order methods in terms of accuracy and efiiciency. However, they do not address or 

attempt to q u a n e  the penalty of not impfoying the viscous flux approximation. An 
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error in the viscous flux approximation within the boundary layer, where the flow 

is dominated by a balance between the viscous and inviscid fluxes in the streamwise 

momentum equation, can lead to large errors in the prediction of drag. 

Early evidence of an atternpt to use a higher-order treatment of the viscous terms 

for steady flow can be found in 171, where the case of a supersonic boundary layer 

over a flat plate was examineci. Hayder et al. [26] apply the same spatial algorithm 

for subsonic flow over a flat plate. They compare two spatial schemes. The first 

consists of fourthsrder accurate approximations for the inviscid terms and second- 

order for the viscous terms. The second scheme was uniformIy fourth-order accurate 

for both the inviscid and viscous terms. hundary layer profles Uustrate the marked 

improvement that comes from using a fourth-order accurate treatment of the viscous 

terms. 

Sjogreen [52] and ïkeiler and Childs [59] use a higher-order treatment for both 

inviscid and viscous t e m  on structured grids for the solution of laminar flow past a 

cyliader. Sjogreen [52) examines supersonic fiow at low Reynolds numbers. Second- 

and fourth-order schernes are evaluated by performing grid convergence studies com- 

paring surface skin-friction distributions. Accurate solutions were obtained on rela- 

tively coarse grids (65x33) using the fourth-order scheme. In areas where the bound- 

ary layer remained fully attached, the second-order scheme required 4 times as many 

nodes to obtain simiIar accuracy. There were some limitations, however, to the higher- 

order centered difference schemes used in [52). They could not be used for discon- 

tinuous solutions. Hence the outer boundary of the grid was fit to the bow shock 

by using the Rankine-Hugoniot condition. Whermore, scaiar dissipation was used, 

which may have limited the potentiai of the higher-order scheme. 

Tteidler and Childs [59] examine subsoaic flow about a cylinder and also perfom 

grid convergence studies comparing various ordered spatial schemes implemented in 

OVEXF'LOW [29], a weii known compressible NavierStokes flow solver developed at 

NASA Ames research center. The results indicate that examining total drag on each 

grid can be misleading, Skia-friction and drag due to pressure can w p t o t e  to the 

grid independent value fiom opposite sides. Hence, numerical error in esch of these 

terms can canceI each other out pfesenting a far more positive picture than may ac- 
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t u d y  exist. The fiction drag d t s  computed using the higher-order discretization 

describeri in [59] did not show significant impmment over the second-order solver. 

The authors indicated that M e r  study is necessary to isolate the cause of this be- 

haviour. The authors added that there was some concern as to the accuracy of force 

and moment integration and that more accurate post-processing mi& be necessary. 

Visbal and Gaitonde [60] present both qualitative and quantitative analysis for 

laminar, incompressible, subsonic flow p s t  a fiat plate and cylinder. Centered com- 

pact schernea of up to sixth-order order are developed with 6 i tehg  schernes of up 

to tenth-order. As with previous authors, Vibal and Gaitonde [60] demonstrate 

the reduced grid density requirements when using high-order spatial schemes. The 

second-order d e m e  used in mogt of their compatisons with the higher-order meth- 

ods, however, used sdar artiûcial dissipation which is likely the major source of 

error presented in the d t s .  When the second-order method was combiied with a 

fourth-order filter (instead of damping) in one experirnent for the flat-plate solution, 

its accuracy improved substantiaüy. For the unsteady laminar Bow past a cyhder, 

Viibai and Gaitonde [60] compare r d t s  on two grids for the various spatial schemes 

and compare the Strouhal number and maJamum lift and drag coe5cients. Individual 

drag components were not provided, malMg it difficuit to determine the true benefit 

of the higher-order viscous terms. Eùrther qualitative analysia was performed in 3D 

for the unsteady laminar simulation of spiral vortex breakdm above a slender delta 

wing. Compareci to the second-order scheme, the sixthsrder scheme was better able 

to resolve the cornplex flow structures inherent in this flow. The sixth-order scheme 

wris 1.9 - 2-4 times more computationa.ily expensive than the secondsrder scheme 

depending on the details of the iterative solver. The authors make a conservative 

estimate that the number of mesh points required in each coordinate direction can be 

reduced by a factor of two. Consequently, for the type of 3D flow examinecl in [60], 

the required rnernory and CPU resoutces can be reducd by factors of at least eight 

and four, respectiveiy- 

Much of the analysis presented thus far demonstrating the dciency of Mgher- 

order methods for solving the NS equations is based on laminar flow conditions with 

small kee-stm Mach numbers. In the solution of the RANS equations in mnjunc- 



Section 1.1. Background 9 

tion with turbulence modeling for compressible subsonic or transonic flow conditions, 

the case is not as clear. Given the complexities of high-Reynolds number extema1 

flows about single- or multi-eiement airfoils, the use of higher-order methods may 

provide significant benefits. The flow around multi-element airfoils is generally more 

complex than for single-element geometries. Adequately resolving separateci regions 

and confluent boundary layers often requires large grid densities. Nelson et al. [38] 

demonstrateci that second-order multi-block solutions for a Selement airfoil are grid- 

dependent, even with grid densities of over 100,000 points. New algorithm are needed 

to reduce the number of nodes required to achieve sufficiently grid independent re 

sults, which would in tum reduce the CPU and memory requirements. In combination 

with modern convergence acceleration techniques, highersrder methods appear to be 

the next step towards achieving this goal. 

Published research using higher-order rnethods with turbulence models for solving 

external turbulent fiow over single- or muiti-eiement airfoils is limited. One example 

can be found in Rangwalla and Rai [46]. They present a fourth-order finite-ciifference 

scheme for salving the compressible thin-layer Navier-Stokes equations on grids hav- 

ing multiple zones. They examine subsonic flow through an experimental turbine 

stage and compare the fourth-order resuits with a standard third-order accurate 

upwind-biased method. The third-order method was combinecl with second-order 

apprmimations for the viscous terms. The Baldwin-Lomax [4] turbulence model was 

used with both spatial schernes. As in [60], pressure and entropy contours Uustrate 

the capability of the fourthsrder treatment to resolve complex flow physics between 

elements and the vortices shed kom the trailing edges. The third-order method with 

second-order viscous approximations was unable to resolve and track the small scaie 

flow features given the grid density use& 

AIthongh the benefits of the fourth-order method in [46] were significant, a number 

of issues were not quantifid The anthors present a fourth-order scheme for the 

viscous approximations but inàimte that second-order approximations are used at the 

d a c e  and zonai boundary points. It is unclear as to how this affects the accuracy 

of the solution in those areas- There is no indication as to the spatid accuracy of the 

turbulence model or computation of vorticity. These quantities can aiso affect the 



accuracy of the viscous approximations. Much of the d ~ t a  presented in [46] are related 

to pressure. There are no data presented xi6h respect to viscous related items like 

skin-fiction or boundary-layer profiles. Such data a. vitd to aid in determinhg and 

quantiSing the benefits of using higher-order approximations for the viscous t e m .  

This Literature review briefly summarizes the deveIopment of higher-order spatial 

schemes for the NS or RANS equations. Although the application of higher-order 

methods to DNS or lamina exterual ffows has received considerable attention in 

recent years, there still ex& no clear demonstration that higher-order methods are 

more efficient than conventional secondader methods in the computation of practical 

turbulent aerodynamic flows. 

Objectives 

The objective of this thesis is to develop a spatid discretization consistent with 

third-order accuracy? and to provide a dear demonstration as to the efficiency of t h  

algorithm compareci to a standard secondader scheme. We wish to demonstrate the 

improved accuracy of the new highersrder algorithm on grids of practical density. 

In order realize the full potentiaI of the higher-order method, every aspect of the 

spatial discretization mu& be addressed and raised to a suitabIe level of accuracy. 

This includes: 

a inviscid fluxes, including artificial dissipation or filtering, 

metrics of the curvilinear coordinate transformation, 

r canvective and di&isive fluxes in the turbulence model, 

a interpolation at zona1 interfaces, 
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integration for force and moment caiculations. 

Aithough it is generally fairly straightforward to increase the accuracy of the basic 

flux derivatives, some of the other components can be more problematic. In partic- 

ular, high-order numericd boundary schemes c m  cause instabilities [?O]. Transonic 

flows with shocks introduce an additional degree of difficulty in that first-order nu- 

mericd dissipation is typicaliy added near shocks, which can potentially undermine 

the benefits of a higher-order method 191. Grid convergence stuclies [66, 471 are used 

to compare the accuracy of the higher-order discretization with a well-established 

second-order discretization. 





Chapter 2 

Governing Equations 

In this chapter the solution method for soIving the Navier-Stokes equations is 

presented. The higher-order spatial scheme is developed and implemented in CY- 

CLONE [14], which is based on the thin-layer NavierStokes solver ARC2D [41]. This 

solver uses a generaiized curviiinear coordinate transformation and is thus applica- 

ble to structured grids. The new spatial algorithm is also implemented in TOR- 

NAD0 [17], an extension of CYCLONE to multi-block grids. TORNADO is used 

to mode1 complex flow around multi-element airfoils. The governing equations are 

presented in Section 2.1. The thin-layer approximation is described in Section 2.2, 

and the Baldwin-Lomax and Spiart-Allmaras turbulence models are outlined in Sec- 

tion 2.3. A description of the boundary conditions foiiows in Section 2.4. 

2.1 Navier-S t okes Equations 

The governing equations for aerodynamic Bows are the Navier-Stokes equations- 

In tw&ensionaI Eonn for Cartesian coordinates (z, y), the equations can be h t t e n  

as 



14 

where 

contains the conservative variables. Here we scale the dimensionai variables, Cartesian 

cooràinates (2, e), density (fi), velocity (ii,üj, totaI energy (ë), and time (q, as 

where oo refers to freestream quantities, c is the chord Iength, and a is the speed of 

sound, which for ideai fluids is a = m. The ratio of specif~c heats, 7, is taken 

as 1.4 for air. Pressure, p, is related to the consemative flow variables, Q, by the 

equation of state for a perfect gas, as foUm 

Referring to Equation 2.1, the convective and vismus flux vectors are 

and 
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respec tively, wit h 

where p = fi/ji, is the non-dimensionai dynamic viscosity, pt is the nondimensionai 

turbulent eddy viscosity, 'Re is the Reynolds number, Pr is the Prandtl oumber and 

Prc is the turbulent Prandtl number. The Prandtl number is defined by 

where Q is the thermal conductivity and c, the s p d c  heat at constant pressure. 

The P m d t l  nunber is considered coastant in this study and is set to Pr = 0.72 and 

Prt = 0.90. Using the chord of the airfoil, c, as the reference length, we d e b e  the 

Reynoids number as 

Re= Poo C a m  

Pœ 

2.2 Thin-Layer Navier-S tokes Equat ions 

For the aerodynamic flows studied in this work, namely high Reynolds number 

viscous ~ O W S ,  the effects of viscosity are concentrated near the airfoil surface and 

in wake regions. Typicaily, the viscous derivatives in the streamwise direction are 

neglected. Thii Ieads to the thin-Iayer approximation of the NS equations. The 

rationale behind this approximation is that for attached and mildy separated flom, 

the gradients of the streamwise diffuson terms are smaii compared to the nomal 

gradients. 



Converting to curvilinear coordinats (f, g) [41], and dropping ali the viscous 

derivatives in the f direction, we arrive at the thin-layer Navier-Stokes equations for 

a c d n e a r  coordhate system as foiiows (see Figure 2.1): 

where, 

The convective flux vectoss are 

with 

the contravariant veiocities. The variable J represents the metric Jawbian of the 

transformation: 

The viscous flux vector is 
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Figure 2.1: Curvilinear coordinate transformation (used with permission from T, H. 
PuIiiam) 

with 

2.3 Turbulence Models 

The effects of turbulence can be approxhated by adding an eddy viscosity term, 

b, to the dynamic viscosity p in the faShion s h m  in Eqs- 2.7 and 2.16. In our 

study, we use the aigebraic Baldtipin-Lomax [4] model and the one-equation Spaiart- 

Allmaras [53] mode1 to wmpute b. 
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2.3.1 Baldwin-Lomax Turbulence Mode1 

Currently, the Baldwin-Lomax turbulence mode1 is only implemented in CY- 

CLONE. It is inadequate for high-1% mdti-eiement 0ow computations. The flow 

may contain confluent boundary layers, large separated regions, and separated wakes, 

none of which can be treated properly with aigebraic models. Hence, it is not used 

in TORNADO. This model is, however, qui& and robust for single-element compu- 

tations and provides d c i e n t l y  accurate r d t s  for attached and mildly separated 

flows. In the Baldwin-Lomax model, the boundary layer is divided into two Iayers, 

an outer and inner layer. The eddy viscosity in the two layen is given by 

where y is the normal distance £rom the wall and is the smallest value of y 

at which values fiom the inner and outer formulas are equal. 

For the inner region, the Prandtl-Van Driest formulation is used: 

where k and A+ are constants, (w( is the magnitude of the wrticity: 

and the law-of-thewall coordinate y+ is given by 

The subsccipt ut denotes values a t  the w d ,  u, = J.I/A. b the Eriction velocity, and 

r, is the shear stress at the wall. 

In the outer region, pt takes the foiiowing brm: 

where K is the Clauser constant, C, is an additionai constant, and 
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The quantities F,, and p,- are determineci from the function 

In wakes, the exponential term of Equation 2.24 is set equal to zero. F,, iç the 

maximum d u e  of F(y) in a profile and y,, is the d u e  of y that satides F(y) = 

Fm. The function Fkl&) is the Klebanoff intermittency factor given by 

The quantity udif ,  is the ciifference between miwimum and minimum totd vekocity 

in the profile and is given by 

The Baldwin-Lornax turbulence mode1 is patterned after that of Cebeci [IO]. Re- 

quiring agreement with the Cebeci formulation for constant pressure boundary layer~ 

at  transonic speeds leads to the following values for the constants used in the above 

2.3.2 Spalart- AlIrnaras Turbulence Mode1 

The Spalart-Allmaras turbdence model is a one-equation transport model written 

in te- of the eddy-viscosity-like term ü. The equation is 

The kinematic eddy viscosity, ut is reIated to the eddy viscosity term ü through the 

equation 

ut = üfor 



where 

and 

The production t em 3 in the differential equation is given by 

where S is the magnitude of the vorfiicity, d is the distance to the wall and 

The destruction function fw is given by 

where 

Tkansition is included using a trip function. The transition functions are 

where 

In the transition functions, dt is the distance to the trip, wt is the vorticity at the 

trip, and Azt is the grid spacing at the trip. The velocity diffmnce between a field 
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point and the trip is AU. The constants used for the Spalart-Alharas model are 

For multi-element airfoik there is a trip on the upper and lower surface of each 

element so a point in the field could refer to more than one trip. In this instance the 

closest trip of thme on the correct surface of each airfoil is used. Since the &ect of 

the trip is very locaiized, two trips are never close enough to cause a significant effect 

on the same field point. There are many subtieties regarding the implementation 

of this model in a multi-block/multi-element context. Neison [37] describes these 

irnplernentation issues for the Baldwin-Barth 151 turbulence model. The Baldwin- 

Barth modd is a b  a oneequation transport model and is implemented in mu& the 

same mamer aa the SpaIar~-Allmaras model. 

2.4 Boundary Conditions 

The interior numerical scheme used in CYCLONE and TORNADO requires four 

boundary conditions to be specified at each domain buundary. Physicai boundary 

conditions provide some of the necessary equations. Numerical boundary conditions, 

normdy obtained thmugh extrapolation kom the interior, are employed to make 

up the baiance. In this section, the boundary conditions are outlined, while the 

corresponding spatiai schernes are discussed in Section 3.2. 

Figure 2.1 illustrates the computationai domain for an extemai %ow around a 

single-eiement airfoil, There are three bonndarks to addtess: body Surface bound- 

aries, fm-field boundaries, and the wakecut. AU boundaries are treated expliutly 

in both CYCLONE and TORNADO, dthough there is an option in CYCLONE to 



(a) CYCLONE. 

(b) TORNADO. 

Figure 2.2: Normal and tangentid directions at the boundaries. 
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treat the wake+ut implicitly if the turbulence mode1 is set up to do the same. 

The normal and tangent directions at the boundaries are dehed in a similm 

manner in both CYCLONE and TORNADO for single-element Ggrid topologies as 

shown in Figure 2.2. In Figure 2.2(b) the solution domain is divided into three bbcks 

and each block side is numbered 1 - 4. The normal at the farfield boundaries is dehed 

to point out of the domain for both solvers. 

2.4.1 Body Surface 

Inviscid Flow 

At the body d a c e  (between points B and C in Figure SA), flow tangency must 

be satisfied for inviscid flows. The nomd component of velocity is set to zero and the 

tangentid components are linearly extrapolated. The normal and tangentid velocities 

at the body are given by 

The pressure at the surface is extrapolated from the interior. The density is de- 

termined fkom the equation for free-stream stagnation enthalpy, Ha, which is held 

constant at the surface: 

Using Equation 2.4 and substituthg for the energy variable in Equation 2.41, one 

obtains the expression for density on the body surface: 

Viscous Flow 

For viscous flow, n d i p  conditions are applied on the body surface. This condition 

leads to the first two equations, velocities u = v = O. Presmire can be obtained by 
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extrapolation h m  the interior or a Neumann condition can be used where the normal 

gradient of pressure at  the wall is set to zero: 

We prefer to use the Neumann condition as it is found to be more robust for higher- 

order spatial stencils. Note that the assumption that ûp/* = O is not strictly correct. 

However, for aerodynamic Bows at high Reynolds numbers, the enor introduced is 

very small. We have experimented with both extrapolation of pressure and the Neu- 

mann condition with no signiIicant change in the solution. Furthemore, the error 

introduced is a physicaI error, not a discretization error (481, and hence does not af- 

fect the conclusions Erom grid convergence studieç. Eùrther discussion on this issue 

can be found in Section 3.2.5. Densitq can be determined £rom either adiabatic or 

isothermal conditions at the d a c e .  We use adiabatic conditions in aii calcuhtions. 

For an adiabatic d, when coupled with the assumption of zero pressure gradient 

and the perfect gas law, density also satisfies a zero normal gradient at the wall: 

Inviscid - CYCLONE 

The value of Q at the bouudary node is caicuiated as follows: 

where K is chosen in the direction normal to the boundary, and represents the 

correspondhg flux Jacobian as foUows: 

for j = l o r  j =  j,, 
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Figure 2.3: Normal and tangentid directions at the boundaries for H-grid topologies. 

In Equation 2.45, bc indicates the boundary value, CO indicates values obtained from 

freestream conditionsy and ezt indicates values extrapolated from the interior nodes 

of the mesh. A is a vector containhg the eigenvaiues of the flux Jacobian matrix 

Â = 8Ê/@ or B = a$/@. The matrix T contains the eigenvectors of *. These 

variables wiii be derived in detail in Chapter 3. The eigenvalues and eigenvectors are 

caicdated h m  the mean state, &, = ;(Q- +Q&). 

Inviscid - TORNADO 

Before proceeding, it is pmdent to expand on the normal and tangent definitions 

outlined in Figure 2.2(b). For the majority of cases, TORNADO is used to solve flows 

on H-grid topologies. Consistent with the normal and tangent directions defineci in 

Figure 2.2(b) for a multi-block Ggrid, Figure 2.3 illustrates the directions dehed 

for an H-grid topoiogy. Here, the normal and tangentid velocities, depending on the 

side forming the far-field boundary, are as foiiows: 



The metric terms are defineci by 

sides 2 and 4 sides 2 and 4 

sides 1 and 3 sides 1 and 3 

(2.49) 

The boundary conditions of Equation 2.45 have also been implemented in TOR- 

NAD0 but were not used in this study. ïnstead, characteristic conditions are used 

to apply the explicit far-field boundaries. The four variables used are the locaiiy 

one-dimensional Riemann invariants: 

as well as & and a function of entropy: 

These four values are set to freestrearn values or they are extrapolated fiom the 

interior flow variables depending on the sign of t he corresponding characteristic speed. 

For the Riemann invariants RI and Rz, the corresponding characteristic speeds are 

XI = Vn - a a d  X2 = Vn + a  respectiveiy. 

For subsonic inftow, V, < O, XI < 0, and X2 > O so the Riemann invariant 

RI is determined hom b s t r e a m  conditions (h,u,,&), and Rz is determined by 

extrapolation fiom the interior (ud,ve,ad). For subsonic outflow, Vn > O, XI < 0, 

and X2 > O. As in the case for subsonic inflow, RI is determined fiom freestream 

conditions and R2 is extrapolated. For idlow, & and & are set to b s t r e a r n  

conditions. For outfiow, they are extrapolated h m  the interior. Once these four 

variabIes on the boundary are caidated, a number of quantities are rdcuia ted  

using the foiiowing relations: 
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and the velocities are obtained fiom 

-GVn+Eg& sidel -$Vn - && side 1 

-cVn  - EgV, side 2 - sVn  + &K side 2 
u = and u = (2.58) 

&Vn - && side 3 %&+&& side3 

For supersonic idow and outflow conditions, the reader is referred to [41]. 

A common practice in viscous flow computatiom is to use simple extrapolation 

of aii variables from the interior at outflow boundaries (j = 1 and j = j,, in Fig- 

ure 2.2(a)). The entropy gradients associated with convection of the wake make the 

characteristic analysis used for inviscid flows inappropriate. Zeroth-order extrap* 

lation of p, pu, pv and p is often used. This process is equivalent to a first-order 

approximation to aq/ac = 0 where q may represent any of the variables mentioned 

above and is in the direction normal to the outflow boundary. This approach is 

used for both CYCLONE and TORNADO. Second-order approximations to the zero 

normal gradient are used for the higher-order scheme. 

2 -4.3 Circulation Correction 

For Iifting bodies, the far-field boundary may affect the solution. To correct for 

this effect, a far-field circulation correction is applied to the free-stream variabIes, as 

describeci in Appendix A. 
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Numerical Method 

CYCLONE 1141 and TORNADO [l?] use impiicit time-marching techniques to 

iterate to steady-state. The tirne-marching method and other detaiis of these two 

solvers are described in Section 3.1. Section 3.2 describes the spatial discretization of 

the new higher-order algorithm, which is consistent with gIobal thi-order accuracy. 

3.1 Time-Marching Method 

Although we are ody  interested in steady-state so1utions for this work, the two 

solvers are capable of &ciently solving unsteady externa1 Bow about an airfoil[13,15]. 

Since we are not interested in time accuracy, it is sufiicient to use a kt-order tirne- 

marching method to advance the solution to steady state. The M-order implicit 

Euler method is used since it has a broad stability region. When the implicit Euler 

time-marching scheme is applied to Equation 2.10 one obtains 

A@ + ~t (acp+~ + a , ~ + l -  ~ ~ l a , p ~ )  = O (3-1) 

where At is the thne step and AQ = @+l- @ with Q = Q(TZA~) - The vectors Ê, 

f', and s are locally hearized: 

b+l = E" + Â n ~ @  +o(atz) 
F+' = F + ~ ~ A Q " + O ( A P )  

S"+l = Sl +PA@ +o(AP) 
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where the matrices Â. B, and K are the fiux Jacobiaos, defined by 

aÊ A=-  =- aF - a$ 
and K = - 

a ~ '  a~ ' @ 
Cornbining Equations 3.1 and 3.2 one amives at the following: 

w here 

@ = -~t[a<E(@')  + a,, F (@) - 
In general, Equation 3.3 is prohibitiveiy time conçuming to solve directly. Var- 

ious approximations can be made to the irnplicit operator (left-haud side) in order 

to reduce the required computationaI time. The approximateiy-factored method of 

Seam and Warming [8j can be applied to Equation 3.3. In combination with spatial 

merences, the equations take on the foliowing form: 

The syrnbol d in Equation 3.5 denotes a spatial operator. Central ciifferences are 

used for the spatial discretization. Note that central difFerences requise the explicit 

addition of numerid dissipation as describeci in Section 3.2.1. 

To further reduce the cornplexity of the Iefbhand-side, the diagonal form of Pui- 

liam and Chaussee [43] is implemented. The Jacobian matrices are diagonalized as 

foliows: 

where the matrices Ac and 4 are diagonal matrices whose elements are the eigen- 

values of the flux Jacobians, The viscous Bux Jacobian K cannot be simuitsneansly 

diagonalized with the flux Jacobian l?, so it has been dropped h m  the left-hand side. 
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However, a term approximating the viscous eigenvalues is added to the diagonal of 

B, as describeci by PuIliam [41]. The m a t e  TI bas the eigenvectors of Â as columns, 

and T, has the eigenvectors of B as columns. The eigenvector matrices are factored 

out, giving 

where A, is the term approximating the viscous eigenvaiues and is defined as 

Variable tirne stepping is used to accelerate the convergence rate by roughly equai- 

izing the Courant numbers of each ceii. Using a spatially varying t h e  step can be 

effective for grids with widely varying ceii dimensions. Such gnds are typicai in aero- 

dynamic simdations. The Courant number variation can be made more uniform by 

scaling with the Jacobian: 

Spatial Discretizat ion and Force Integrat ion 

As stated in Section 1.2, one of the objectives of this thesis is to deveIop a con- 

sistent third-order algorithm. To accompiiih this, with the exception of first-order 

dissipation used near shocks and some terms within the turbulence models, only hi te-  

ciifference stencils of at least third-order accuracy are used. The only other exceptions 

are the stencils used near some boundaries. Numerid boundary schemes musfi be 

chosen such that they, when combined with the interior scheme, remain stable for a 

wide varîety of flow conditions and preserve the global spatial accuracy of the interior 

scheme. Gustafsson [25] has shown that numerid boundary schemes cm be one 

order Iower than the interior scheme without reducing the global order of BCCUT~CY- 
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Hence we can use second-order numerical boundary schemes while preserving third- 

order global accuracy. Nevertheless, we use third-order boundary schemes wherever 

possible. The details of the following item will be addressed in this section: 

0 numericd dissipation, 

0 inviscid fluxes, 

metrics of the curvilinear coordinate transformation, 

0 viscous flues, 

0 convective and diffusive flues in the turbdence model, 

0 near-boundary operators, 

extrapolation at boundaries, 

O interpolation at zona1 interfaces, 

integration for force and moment calculations. 

The following sections describe the new highersrder algorithm. 

3.2.1 Numerical Dissipation 

In order to maintain stabiity, numericd dissipation, often referred to as artscia1 

dissipation, must be added to the centeted ciifference scheme used for the convective 

fluxes. The numerical dissipation is added using the matrix dissipation scheme of 

Swanson and Turkel[54]. It is implemeuted in the following mannerf 

'An d o g o u s  term appears m the q direction 
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wit h 

where 4 is a centered difference operator, Ac and Vc are first-order forward and 

backward difference operators, and tq = 0.02. We use 6 2  = O for subsonic flows, and 

I C ~  = 1.0 for transonic flows. The term is a pressure switch to control the use of 

fint-order dissipation near shock waves. The matrix IA( is given by 

Here IArl contains the eigenvaiues of the flux Jacobian matrix Â = g, as follows: 

where U is the contravariant velocity component in the direction, a is the speed 

of smd, 0 = Jzf-e, and & and 8 are the metrics of the cufvilinear coordinate 

transformation. The matrix Tt contains the nght eigenvectors of A. In evaluating 

[Ab+rc we have used the simple average (f ((Alj$ + (A(j+is]); the Roe average is 

recomrnended for flows containhg very strong shock waves. To avoid zero eigenvaiues, 

the elements of IAlc are modified as foliom: 

where a is the spectral radius of the flux Jacobian. We use & = V, = O for subsonic 

flow, and = 0.025, V', = 0.25 for transonic flows. Note that the value of & has a 

much greater dect  on stabiiity and total drag than I/,, 
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Pulliam [42] showed that the best rate of convergence for the Euler equations is 

achieved when matched artificial dissipation operaton are included bath implicitly 

and explicitly. A contribution fkom the dissipation, analogous to Equation 3.12, is 

therefore added to the left-haud-side of the implicit algorithm of Equation 3.9. 

The vanable dj+;* in Equation 3.12 contains second- and fourth-Merence ternis 

which scale as fmt- and third-order terms respectively. The fourth-difference term 

uses a symmetric five-point stencil: 

At near-boundary nodes, the foilowing operator is commonly used for the dissipation: 

1 
-(-2gj+1 + 543 - 49,-i + qj-2) 
AC 

(3.17) 

Since this term is only first-order accurate, it is replaced by the foiiowing second-order 

operator for use with the higher-order scheme: 

Oscillations in the vicinity of shocks in transonic flow can arise when using third- 

order dissipation. To provide better shock resolution, bt-order dissipation is added 

near shocks through the use of the pressure switch, Y, described above. The effect of 

fbt-order dissipation on the global accuracy of transonic solutions is investigated in 

the Chapter 4. 

Centered ciifferences are used for the convective fluxes. Note that the use of fourth- 

difference (third-order) dissipation necessitates the use of a fivepoint stencil and 

thus the solution of pentadiagonal systems. hcreasing the accuracy of the centered 

ciifference operator to fourth order does not increase the stencil size, and the overall 

increase in computing expense per grid node is small. Fiaüy, note that the grid 

metrics are evaluated using the same operators as the convective fimes without any 

numerid dissipation. It must be stressed that matching the spatial operators of 
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the metrics and convective terms is critical. Not doing so generates large truncation 

m o n .  The resuiting source tenu precludes the ability to obtain a zero raidual for 

initiai uniform freestream conditions. 

The foUowing operators are used to approxirnate ht derivatives: 

Higher-order Algorithm 

In terior (4 th-order) 

1 

The 1st equation is required ody for the calculation of grid metrics. 

3.2.3 Viscous Fluxes 

The viscous terms are in the foilowing general form: 

There are a number of ways to deal with Equation 3.22. Some researchers elect to 

expand the expression, through chain-rule differentiation, into its non-conservative 

counterpart (33, 44, 45, 341 consisting of first and second derivatives as foiiows: 

The reason is that direct evaluation of the second derivative is signiscantly more ac- 

curate at the s m d  d e s  than two applications of a first-derivative operator. This 

would make the non-conservative fonn more attractive to those using DNS. Another 
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reason could be that successive applications of standard centered-difference opera- 

tors for first derivatives may not provide d c i e n t  damping to odd-even modes. In 

the present work, the conservative form of the viscous terms is cornputeci. We a p  

ply successive ciiierentiation using quantities at mid-points of the mesh to obtain a 

conservative operator. The differentiation is first biased in one direction and then 

biased in the opposite direction to complete the second derivative. We have used this 

approach without encomtering any difiiculty. 

The foilowing fourth-order expression is used to calculate the %Bj tem, irom 

Equation 3.22, at half nodes: 

Near boundaries, the following third-order expression is used: 

The value of a,+: is determineci using the foliowing fourth-order interpolation for- 

mula: 

Near boundaries, a 

Using the following simiiar expressions, 

#j = aj+iJ9Sj+i 

the complete operator becomes: 
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in the interior, and 

near boundaries. This approach leads to a seven-point stencil. On the left-hand-side 

of the approximate factorization algorithm, we use a second-order operator which is 

identical to the one used in the original second-order algorithm. 

3.2.4 Turbulence Models 

The implementation of the Baldwin-Lomax and SpaIart-Ailmaras turbulence mod- 

els requires the calculation of the vorticity. The procedure is slightly different for the 

two turbulence models due to implementation issues. 

For the Baidwin-Lomax turbulence model, vorticity is computed at the half-nodes 

using the operators gîven in Equations 3.24 and 3.25. The grid metrics are interp* 

lated to the half nodes using Equations 3.26 and 3.27. Since the computation of the 

eddy-viscosity takes place at the halt nodes, aii other relevant information is also 

interpolated using the highersrder interpolants. 

For the Spalart-AlIrnaras model, the eddy-viscasi~ is first computed at each node 

and then interpolated to the half node position. Hence, vorticity is computed using 

Equations 3.19 - 3.21. Equation 3.21 is used to compute vorticity on the airioil . 

surface. Since the grid metrics are computed at the same nodal positions, there 

is no need to interpolate. Once the eddy-viscosity is computed at each node, it is 

interpolated to the haif nodes using Equations 3.26 and 3.27. 

The diffusive terms in the Spalart-Aiimaras turbdence model are handied in the 

same manner as the viscous terms describeci in the preceding subsection. A W-order 

upwind scherne is used for the convective terms in order to maintain positivity of the 

eddy viscosity We have experimented with a third-order upwind-biased treatment of 
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the convective terms and seen no degradation in accuracy associated wit h the use of 

the first-order operator. 

3.2.5 Boundary Conditions and Zona1 Interfaces 

Far-Field Boundary 

The far-field boundary conditions are described in Section 2.4.2 for both CYCLONE 

and TORNADO. The following secondsrder extrapolation operator is used at the 

far-field boundary: 

S = 3qi - 3q3 + q4 (3.31) 

Extrapolation formulas of third order and higher in combination with the fourth-order 

interior scheme (Le. Equation 3.19) proved unstable for both far-field and airfoil-body 

boundary conditions. We expand on this topic in the following subsection. 

As described in Section 2.4.2, the use of a finite domain does introduce error, even 

when a circulation correction is used (661. The e m r  varies with the inverse of the 

distance to the outer boundary [48]. However, this error does not depend on the grid 

density and thus does not affect the ermr estimates from the @d convergence studies. 

Airfoil Body 

The pressure a t  the airfoil surface is determined kom a third-order approximation to 

&/& = O (see Section 2.4.1), which gives 

Note t hat third-order boundary schemes are sufficent to maintain fourth-order gIobd 

accuacy. Density at the airfoil surface is determined from an expression andogous 

to Equation 3.32. We have experimented with extrapolation of pressure and density 

using Equation 3.31 and the foiiowing third-order operatoc 

Both one- and tw&ensionai experiments have shown that for extrapolation, the 

highest order of accnracy that can be nsed while maintaining stab'ity appears to be 



Section 3.2. Spatisl Discretkation and Force Integration 39 

2 less than that of the interior scheme. In our experience, Equation 3.33 has proven 

to be unconditiondy unstable in conjunction with Equation 3.19 used in the interior. 

Equation 3.31 was mildly stable for small time-steps. First-order extrapolation proved 

to be very robust but it would undermine the global accuracy of the higher-order 

scheme. Experiments with stencils of up to third order (i.e. Equation 3.32) used to 

approximate Equation 2.43 proved stable for al1 the cases examined in this work. 

Wake-Cut 

Although the Baldwin-Lomax model is irnplemented with either an implicit or an 

explicit wake-cut, the Spalart-Aiimaras model is not irnplemented to handle wake 

cuts irnpiicit ly. For consistency, al1 results presented in this thesis are computed whiie 

treating the wake-cut explicitly. The interpolation at the d e - c u t  (WC) is computed 

to fourtharder using the data above and below the wake-cut as follows: 

neatment of Block Interfaces 

Neighbouring block boundaries, in the streamwise direction, are overlapped at  

the interfaces. A specified nurnber of columns of points are taken fiom the neigh- 

bouring block (known as the halo colurnn). Consider the rectangular 2-block grid in 

Figure 3.1. For simplicity, only one halo column will be considered here- The 6rst 

interior column of block 2 is stored in the halo column of block 1, and the la& interior 

column of block 1 is stored in the halo column of block 2. Blocks 1 and 2 are then 

updated independently, resulting in two solutions at  the block interface. The two in- 

terface solutions are subsequently a~eraged. At steady state, the streamwise interface 

is completely transparent. Cornmon block interfaces in the cross-stream direction 

(i.e., sides 1 and 3 in Figures 2.2(b) and 2.3) are treated like wake-cuts and employ 

Quation 3.34. 
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Figure 3.1: 2-bIock grid with halo data. 

3.2.6 Force Int egrat ion 

A popular second-order approach to the integration of the pressure field is to 

take the average Cp value between two neighbouring nodes on the airfoil surface and 

have the vector act normai to the line joining the two points. This is illustrated in 

Figure 3.2. Proceeding around the aidoil, the apprûpriate contributions in both the 

normal and axial direction with respect to the chord h e  are summed. Once the shear 

stress is computed at every node, it too is averaged and summed to give the viscous 

contribution to the noma1 and m*al forces. A more accurate procedure is necessary 

to maintain high-order global accuracy. 

The foilowing expressions are used to evaIuate the noma1 and aria1 force coeffi- 

cients, CN and CA respectively, with respect to the chord h e .  (For ease of presenta- 

tion, we consider the pressure contribution only.) 

where c is the chord length, s is the arclength dong the aidoil surface (see Figure 3.2), 
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Figure 3.2: Average C,, values for integration of surface pressure. 

z and y are the Cartesian coordinates, and 5 and f i  are unit vectors in the coordinate 

directions. The unit normal with respect to the surface, f i ,  is given by 

We integrate the pressure and shear stress distributions with respect to the arclength 

around the airfoil. This avoids any possible singularities near the leading or trailing 

edges. 

A cubic spline is used to fit a curve through the nodes making up the airfoil 

surface. The spline d o r a  for the 3rdsrder interpolation of 5 and 2 at any point on 

the airfoii surface. The pressure distribution is also splined. An adaptive quadrature 

routine is used to integrate Equations 3.35 and 3.36. The quadrature routine uses the 

ho-point GaussLegendre d e  as the basic integration formula with a global error- 

control strategy. Details regarding the rnechanics of the global strategy can be found 

in Mdcoim and Sirnpson[36]. 

The calculation of C, does not explicitly involve any differencing. The skin-fnction 

coefficient, Cf, however, is computed as foiiows: 

where T i  is the shear stress dong the aufol d a c e ,  q, = kpmM1,, h the dynamic 

pressure, and Mm is the f t e e s t ~ e  Mach number. The shear stress is computed as 
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follows: 

For viscous flow, u = v = O dong the airfoil surface, hence ut = v~ = O. The 

Foilowing fourthsrder spatial operator is used for the derivatives computed normal 

to the surface: 

The grid metric terms use Equation 3.21. Note that explicit use of the metric terms 

in Equation 3.39 underlines the importance of the accuracy of the metric terms if one 

is to compute skin fnction accurately. The commonly used second-order counterpart 

to Equation 3.40 is as follows: 

It has been our experience that this stencil is inaccurate for grids that are highly 

stretched in the direction normal to the airfoil surface. The tmcation errors are 

large and contribute considerable error to the integrated drag force. For a thorough 

study of the effect of grid density and distribution on skin fnction using various 

turbulence models, the reader is referred to reference [57]. 
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Results and Discussion 

In this section, we compare resdts computed using the higher-order algorithm 

with those computed using a secondsrder discretization. Both schemes use matrix 

dissipation. The second-order scheme uses a second-order three-point centered stencil 

for the grid-metric approximations and the inviscid and viscous fluxes. Zeroth-order 

extrapoIation is used at the body d a c e  and the far-field boundaries. The shear- 

stress distribution on the airfoi1 d k c e  and integrated body forces are computed to 

second-order accuracy. 

Zigg at ai. [69] showed that this second-order discretization produces oumerical 

accwacy which is very similar to that obtained using either a thirdader upwind- 

b i d  flux-differen~plit scheme or the convective upstream spüt pressure scheme 

with second-order approximations for the viscous fluxes. Hence this lower-order dis 

cretization is representative of the most popuIar current dgorithms and provides a 

suitable benchmark for assessing the higher-order discretization. The goal of many 

mearchers in CFD today is tu be able to predict total vehicie drag to w i t b  1 

or 2 percent [2, 121. Physica-mode1 errors such as those associated with laminar- 

turbuient transition, turbdence, and the thin-Iayer approximation generally exceed 

those e m r  Ieveis. Limiting the numerical error to tnro percent, however, hdps to 

amid compounding these errors and allows for a more accurate assessment of the 

physicai modeL 

The accnracy of the integration routines is inwstigated in Section 4.1. Redts 



44 Chapter 4. Results and Discussion 

obtained using CYCLONE are presented in Section 4.2 and those obtained using 

TORNADO are presented in Section 4.3, The figures of this chapter are in A p  

pendix B. 

4.1 Force Integration 

To investigate the accuracy of the integration routines we examine a flow for which 

there is an analytical solution. Using a conformal mapping, we can obtain the presswe 

distribution and the Iift coefficient for the steady incompressible potential flow over 

a Joukowsky airfoil. Thus we can evaluate integration techniques by applying them 

to a finite number of pressure values from the analytical pressure distribution and 

cornparhg with the analytical lift and drag coefficients. Figure B.1 depicts the error 

incurred in using the two dHerent integration algorithm (designated "2nd-order" and 

"third-ordef) in computing Cl and Cd as a Eùnction of the number of points used in 

the integration procedure, N. The figure shows the expected slopes correspondmg to 

second- and third-order accurétcy. The higher-order integration scheme reduces the 

error significantly. With, Say, 200 points distributed around the airfoil, the second- 

order integration procedure produces an error in the lift coefficient weli below 0.001, 

which should &ce for virtudy any aerodynamic application. However, the error 

in the drag coefficient is about 1 x W5, which is likely to affect the third significant 

figure in a practical context. 

4.2.1 Overview of Test Cases and Grid Details 

Computational results, obtained using CYCLONE, are presented for the following 

test cases: 

1. NACA 0012 airfoil, M,=0.16, a=6", 1Ee2.88 x 106, Iaminar-turbulent transi- 

tion a t  0.05 and 0.8 chords on the upper and lowei. surfaces, respectively. 
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2. NACA 0012 airfoil, M, =0.16, ar = 12", î7.e = 2.88 x 106, Iaminar-turbulent 

transition at 0.01 and 0.95 chords on the upper and lower surfaces, respectively. 

3. NACA 0012 airfoil, M, = 0.7, cr = 3", Re = 9.0 x 106, laminar-turbulent 

transition at 0.05 chords on both surfaces. 

4. RAE 2822 airfoil, M,=0.729, ar=2.3l0, Re = 6.5 x 106, laminar-turbulent 

transition at 0.03 chords on both surfaces. 

5. RAE 2822 airfoiI, M, = 0.754, a = 2-57", Re = 6.2 x IO6, Iaminar-turbulent 

transition at 0.03 chords on both surfaces. 

These cases span a range of typicd aerodynamic fiows. Cases I and 2 are both 

subsonic flows, the former fuiiy attached, the latter xniidly separateci. Experimental 

data can be found in Gregory and O'Reiiiy [24]. Case. 3 and 4 are tronsonic flows 

with moderate-strength shock waves. Case 5 is characterimi by a much stronger 

shock wave on the upper surfxe than Case 4. There is also a much larger region of 

shock-inducecl boundary-Iayer separation. Experimental data for Cases 4 and 5 can 

be found in Cook et al* [Il] The measured coordinates for the RAE 2822 airfoil are 

used, as in Maksymiuk et al. [35], rather than the standard coordinates. 

Tables 4.1 and 4.2 summarize the grids used for CYCLONE. The family of grids 

outlined in Table 4.1 is primarily used for subsonic cases I and 2, while the grids 

describeci in Table 4.2 are used for transonic cases 4 and 5 ody. Both families of 

grids are used for case 3. AU of the grids have a "C topology. The distance to the 

far-field boundary is 12 chords for al1 grids. W e  this causes some numerical error, 

the error dues not scale with grid density. The error is proportionai to the inverse of 

the distance to the outer boundary [48]. Since the distance to the outer boundary is 

common to al1 grids, this error wili not afEéct our conclusions. Gnd At was generated 

using an eIiiptic grid generator, Grid B was generated by removing every second node 

in both coordinate directions h m  grid A, and grid C was similarly generated from 

grid B. This technique produces a sequence of grids suitable for a grid convergence 

%%en a grici is tedwed to withcmt a nruneric detene, Le. grÏd A inatead of grid Al or A2, we 
are refemng to grid A from both sets of famiües. 
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Table 4.1: Gnd family 1 (CYCLONE). 

Grid 

A l  
B1 
Cl 

C l a  

TabIe 4.2: Grid f d y  2 (CYCLONE). 

Dimensions 

1057 x 193 
529 x 97 
265 x 49 
277 x 49 

study. Two examples of the grids used are shown in Figure B.2. Where transonic 

cases are examineci using the lbt family of grids, we aIso show resuits for grid Cla, 

which has additional grid nodes clustered near the upper-surface shock wave. The 

second family of gri& has increased node density in the normal direction and more 

nodes on the upper surface than the lower surface (but no clustering at the sbock). 

Grid C, from both families, is relatively coarse (under 15,000 nodes), with a node 

density suitable for extension to three-dimensional computations, whiIe grids A and 

B are primariiy for estimation of solution error. For ail grids and cases, the y+ value 

at the fint point Eiom the surface is less than one, where y+ is the standard law-of- 

thewaii coordinate, and therefore there are a few grid points in the linear sublayer 

of the turbuient boundary layers. 

Grid 

A2 
B2 
C2 

4.2.2 Test Case 1 - NACA 0012 Subsonic Flow 

Points on 
Upper 
Surface 

401 
201 
101 
113 

Dimensions 

1025 x 225 
513 x 113 
257 x 57 

Figure B.3 shows the lE, pressure drag, and &in-fnction drag cornputeci using 

the Baldwin-Lomax turbdence mode1 for case 1 on grids Al, BI, and Cl. The 

Points on 
Upper 
Surface 

501 
251 
126 

Points on 
Lower 
Surface 

400 
200 
100 
100 

Points on 
Lower 

Surface 
300 
150 
75 

Trailing Edge 
Clustering 
( x 104) 

0.25 
0.5 
1.0 

Off-Wall 
Spacing 
( x ~ o - ~ )  

0.23 
0.53 
1.2 

Off-Wall 
Spacing 
( x 10-~) 

0.23 
0.53 
1.2 
1.2 

Leading Edge 
Clustering 

(XIO-~) 
O. 1 
0.2 
0.4 

Leading Edge 
Clustering 
( x IO-=) 

0.1 
0.2 
0.4 
0.4 

'hailhg Edge 
Clustering 

( x  IO-^) 
0.5 
1 .O 
2.0 
2.0 
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correspondhg results computed using the Spdart-AUmaras turbuience model can 

be found in Figure B.4. They are pIotted versus 1/N, where N is the number of 

grid nodes. Agreement between the two aigorithms on grid Al is good, indicating 

that numerical errors are very smdl on this grid. Thus grid Al provides a refcrence 

for estimating numericd enors on grids B1 and Cl. individuai drag components, 

pressure and friction drag, are shown instead of total drag in order to get a better 

picture of solution accuracy. The errors in these components are often of opposite 

sign. 

Examining the results using the Baldwin-Lomax model for case 1, one h d s  that 

both discretization schemes produce errors in lift of l e s  than one percent on grid Cl. 

The errors Ui pressure drag on grid Cl are larger, with the higher-order aigorithm 

producing about 3 percent error and the second-order algorithm producing an error 

of apprarcimately 40 percent. Simiiarly, the higher-order aigorithm produces an error 

in friction drag below 2 percent on grid Cl, while the error £rom the second-order 

algorithm approaches 12 percent. 

The results obtained using the Spaiart-Ailmaras model, displayed in Figure B.4, 

are similar to those obtained using the Baldwin-Lomax turbulence model. The similar 

error IeveIs indicate that the first-order convective terms in the Spalart-Aumaras 

model are not a significant source of numerical error. The secondsrder algorithm 

produces an error in pressure and fiction drag, on grid Cl, of almast 30 percent 

and 15 percent respectively. Similar to the Baldwin-Lomax results, the higher-order 

dgorithm produces error leveis of approximately three percent in pressure drag and 

one percent in friction drag. 

The r d t s  presented in this work are not intended to demonstrate the formal 

order of accuracy of the higher-order algorithm. in fact, the data in Fies B.3 and 

B.4 provide no indication that the order of accuracy of the higher-ocder algorithm is 

greater than second-order. Without proper treatment of flow or grid singularities, it 

is unlike1y that third-order behaviour can be shown. Instead, we wish to emphasize 

the improved accuracy of the higher-order algorithm on grid Cl, which is m i c d  

of grids used in practice. Based on Figures B.3 and B.4, the higher-order solution 

computed on grid Cl is more accurate than the second-order solution computed on 
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grid BI, which has four times as many nodes. 

4.2.3 Test Case 2 - NACA 0012 Subsonic Flow 

The flow in this test case is characterized by a smaii region of separated flow on 

the upper surface near the trailing edge. To provide a broader perspective on the 

potential of the higher-order scheme, the accuracy of four different spatial discretiza- 

tions are compareci. The family of grids from Table 4.1 are used and the results, using 

the Baldwin-Lomax turbulence model, are plotted in Figure B.5. The methods are 

labelled as foiiows: 

1. Second-order - matrix art8cial dissipation with second-order centered ciiffer- 

ences for both inviscid and viscous fluxes, secondsrder metric approximations 

and force integration; 

2. CUSP - the convective upstream split pressure (CUSP [56]) scheme as imple- 

mented by Nemec and Zigg [39], with second-order centered differences for 

both inviscid and viscous fluxes, second-order metric approximations and force 

integra tion; 

3. Third-order upwind - third-order upwind-biased scheme [49] for the inviscid 

tenns, as implemented by Jespersen et al. [29], with second-order viscous terms, 

grid metrics, and integration; 

4. Higher-order - matrix artificid dissipation with fourthsrder centered mer -  

ences for the inviscid and viscous terms, fourth-order metric apprdnations 

and third-order force integration; 

The mors in the lift coefficient for aü four methods are below two percent on 

grid Cl. AU of the methods appear to be equaüy accurate. Closer inspection of the 

flowfidd within the boundary Iayer shows that this is not the case, as we s h d  see 

later. The errors in the drag coefficients computed on grid Cl are much Iarger. For 

the two suhsonic cases, examineci thus h, the benefits of the higher-ordet scherne 

are signifiant. The emirs in pressure and fiction drag produced by the higher-order 
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scheme on grid Cl are generally less than two percent. Furthermore, these errors are 

smaiier than those produced by the other three schemes on grid BI, which has four 

times as many nodes. The mors in the drag components from the three remaining 

schemes are greater than two percent, even on grid B1. 

Closer inspection of the solutions reveais that the lower-order schemes lead to 

an overprediction of the boundary-layer thidmess on the upper surface, consistent 

with overprediction of pressure drag and underprediction of kiction drag. Figure B.6 

shows the skin-friction distribution near the leading edge. The grid Al results, which 

provide an accurate reference solution, show every fourth grid node. The higher- 

order results on grid Cl are in good agreement with the reference solution, while the 

secondsrder result significantly underpredicts the maximum near the leading edge. 

The higher-order solution is aise more accurate dong the upper surface where the 

error in the second-order results persists a11 the way to the trailing edge. Figures B.7 

and B.8 show the boundary-layer profiles at 85% chord on the upper surface computed 

on grid Cl. The higher-order scheme is superior to the other schemes, illustrating 

the importance of raising the accuracy of the discrefization of the viscous terms. The 

highersrder results are virhtdy grid independent, even on grid Cl. Note that the 

second- and higher-order algorithma both use the same numerical dissipation scheme. 

Given the accurate resuits of the higher-order scherne on grid CI, the third-order 

mat* dissipation does nd appear to contaminate the solution. It is achieving its 

goaI of producing stability and damping under-mlved modes without introducing 

significant ermr. The error in the second-order results must, therefore, be dominated 

by discretization errors of the inviscid and viscous terms. The third-order upwind 

results, however, are not much better than the second-order results suggesting that 

the discretization e m r  of the metrics and the viscous terms dominate the third-order 

upwind results. 

4.2.4 Test Case 3 - NACA 0012 Transonic Flow 

The resuits computed using the second- and higher-order scheme with the Baidwin- 

Lomax modd, on grid family 1, are dispiayed in Figure B.9. The higher-order dis- 
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cretization produces the smallest pressure drag error on grid Cl, but is nevertheless 

well in excess of two percent. One source of this error is the W-order dissipation 

introduced near the shack wave. Both schemes produce lower pressure drag errors 

when run without any limiting, Le. without any kt-order dissipation, but visible 

oscillations resdt. Another source of error with the matrix dissipation scheme (thus 

afFecting the higher-order algorithm as d l )  is the requirement of nonzero values of & 
and V, in Equation 3.15 for transonic flows. This leads to some of the overdissipation 

characteristic of the scaiar artificial dissipation scherne. For example, the results in 

Figure B.9 were obtained using V; = 0.025. Reducing & to a value of 0.015 reduces 

the presswe drag resuit for the higher-order algorithm on grid C l  fiom 0.00896 to 

0.00889. The correspunding error in those values, compared to the solution on grid 

Al, is 3.9% and 3.1% respectively, a 20% reduction in error. Reducing & even fur- 

ther to 0.005 does not improve the r d t .  Although the relative reduction in error is 

substantiai, the goai is to produce resdts, on grids with similar densities as grid Cl, 

with errors no greater than two percent. 

Adding nodes near the shock, as in grid Cla, does not reduce the pressure drag 

error significantly. Figure B.10 shows details of the pressure coefücient on the upper 

surface of the airfoil computed on grid Cla. For the grid A l  solution, every second 

grid point is plotted. The higher-order algorithm produces an improvement in the 

shock location and a signiiicant reduction in error in the low pressure region forward 

of the shock, with the grid Al solution taken as a reference. The grid Al results show 

a spike at the iaminar-turbulent transition point which is not seen on the coarser grid 

C l a  The present treatment of transition in the Baldwin-Lomax turbulence mode1 is 

slightly griddependent and may explain some of the error seen. 

The added node. near the shock wave do little to reduce the pressure drag error. 

The numerical error associateci with the added fkst-order dissipation in that region is, 

therefore, not the largest source of error. Results using the Spalart-Ailmaras mode1 

produce s i m k  error levels, indicating that the error is not Iikely to be related to 

discretization emrs within the turbuience models. It turns out that a s m d  recir- 

d a t i o n  region aists just att of the shock location. More nodes are needed in the 

direction normal to the aidoil snrface to adequateiy mlve the boundary layer in that 
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region. The second family of grids, outlined in Table 4.2, addresses this issue. Using 

grid family 2 reduces the pressure drag errm significantly. Results for this test case 

using the Spalart-Ahans model on grids A2, B2, and C2 are found in Figure B.11. 

The numericd errors, for the higher-order algorithm, have aii b e n  reduced to les  

than 2% an grid C2, which has less than 15,000 nodes. 

4.2.5 Test Cases 4 and 5 - RAE 2822 Transonic Flow 

Figures B.12 and B.13 show the lift and drag components computed using the 

Spalart-Allrnaras model on grid family 2. The results indicate that the higher-order 

discretization leads to a si@cant reduction in the error relative to the second- 

order scheme, generally producing solutions on grid C2 which are accurate to within 

2 percent. The exception is the pressure drag for case 5, for which the higher-order 

solution has an error of nearly 4 percent, and the soIution computed using the second- 

order scheme has an enor just over 5 percent. Using third-order dissipation alone 

only rnarginaily irnproves the pressure drag results indicating that using ûrst-order 

dissipation near the shock is not the source of this error, It appears that there is 

inMiCient grid resolution in the vicinity of the separation bubble at the shock even 

for the higher-order scheme. Despite the smaü improvement in pressure drag error, 

closer examination of local flow characteristics indicates that the higher-order solution 

is significantly more accurate than the secondsrder solution. Figure B.14 shows a 

portion of the computed pressure coefficient distribution on the upper surface for case 

5. The solution using the higher-order discretization on grid C2 lies much closer to 

the grid A2 solution than that computed using the second-order scheme on grid C2- 

Boundary-layer profles co&m the improved accuracy of the higher-order scheme. 

Figure B.15 shows the computed profiles on the upper surface at 95% chord. The 

error in the vdocity profile computed on grid C2 using the second-order scheme is 

quite large, while the error in the higher-order d t s ,  though visible, is s m d .  
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4.2.6 Accuracy of viscous terms, grid metrics 

and force integration 

In the context under consideration here, namely the solution of the thin-layer 

Navier-Stokes equations using a generalized curviiinear coordinate transformation, 

the extension of aU terms to higher order can be accomplished very efficiently (see 

Section 4.2.7). in other contacts, such as the full Navier-Stokes equations or finite- 

volume algorithms on unstructureci grids, the costs associated with higher-order a p  

proximations can be substantial [6]. Thus it is instructive to examine the relative 

importance of raising various terms to higher order. 

The spatial discretization of the entire code can be broken down into various 

components, as outlied in Section 3.2. In this section, ail terms relating to viscosity 

and turbulence are referred to as viscous t e m .  It is our experience that the most 

accurate results are obtained when al1 the components are treated in a simiiar fashion, 

that is, the order of accuracy of all the components of the discretization is consistent. 

Mixing higher-order inviscid terms with low-ordert metric t e m  can lead to large 

truncation mors. Similarly, mixing higher-order metrics with lowsrder viscous terms 

caa also lead to erroneous resuits. The problem is magaifieci when deahg  with cases 

involving flow discontinuities such as shocks. Hence, it can be diificttlt to determine 

exactly how effective any one component of the discretization is at reducing numerical 

error since the result can behave in a very nodiear fashion. Nonetheless, we attempt 

to address some of these issues here. 

In Section 4.2.3, we compared various discretization schemes for a subsonic case, 

including a third-order upwind scheme. It cari be shown that the third-order upwind 

treatment of the inviscid t e m  is equivalent to a fourth-order central scheme with 

a third-order dissipative component, much like the higher-order algorithm described 

here [69]. The third-order upwind scheme is combined with second-order grid metrics, 

viscous terms, and force integration. Figure B.16 shows a portion of the upper sudace 

pressure distribution, for case 4, obtained using the BaIdwin-Lomax turbulence mode1 

on grid Cla. For the grid A l  solution, every second point is pIotted. Compared to the 

t"Low-order" deres to orders of acniracy of secondsrder or Laarer 



Section 4.2. CYCLONE Reszzits 53 

third-order scheme, the higher-order discretization produces a significant reduction in 

error over the 6irst 20% chord. The d t  provides further evidence of the importance 

of raising al1 components of the discretization, including the grid metrics, to a higher- 

order of accuracy. 

In [16], De Rango and Zingg, carried out a study of the effect on accuracy of raising 

the viscous te- and integration algorithm to higher order. We now sumrnarize and 

expand upon those results. First we address the relative importance of the accuracy 

of the viscous terms. Plotted in Figure B.17 are results for case 1 using the higher- 

order scheme with second- and fourth-order centered treatments of the viscous terms. 

Grid family 1 is used. Note that higher-order metrics and force integration are used 

for both sets of results. The lowersrder treatment of the viscous terms surprisingly 

improves the iift resuits. The error in the original higher-order lift result, however, is 

l e s  than one percent on grid Cl and is considered sufficiently accurate. The secood- 

order viscous terms have the opposite effect on the accmacy of the hdividual drag 

components. In fact, the error on grid Cl doubles when the lower-order viscous terms 

are used. 

Although the results vary fiom case to case, the higher-order viscous terms gener- 

aüy account for roughly 10% of the error reduction associated with the higher-order 

discretization relative to the secondsrder scheme. Using case 2 as an example, the 

second-order algorithm produces an error in pressure drag on grid Cl of roughiy 47% 

in cornparison with the grid Al solution. Using the higher-order algorithm, this e m r  

is reduced to 1.3%. If lower-order approximations are used for the viscous terms, the 

error increases to 4.6% percent. Although the higher-order viscous terms account for 

a relatively smaü fraction of the overall error reduction, they reduce the e m r  by a 

factor greater than three in this exampie. 

Velocity boundary-layer proses for case 5 were shown in Figure 8.15. In Fig- 

ure 8.18, we add to those results the velocity profile computed using the higher-order 

discretization with the viscous terms discretized using the second-order scheme. Con- 

sistent with the previous example, raising the viscons t e m  to higher order accounts 

for roughly 10 percent of the overd error reduction. 

For some transonic cases, using a iower-order approximation for the viscous terms 
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Shear-S tress Grid Bi GridCl 
Approximation % Error % Error 

bigher-order 0.4 1.4 
2nd-order -1.5 -7.9 

Tabb 4.3: Effect of shear-stress approximation on accuracy of Cd, using higher-order 
solution for case 1 (Baldwin-Lomax model). Note: % error is relative to the value 
cornputed using the higher-order algorithm on grid Al,  which is Cd* = 0.005277. 

Approximation % Error % Error 
higher-order 0.0 0.2 

Table 4.4: Effect of shear-stress approximation on accuracy of Cd, using highersrder 
solution for case 3 (Baldwin-Lomax model). Note: % error is relative to the value 
computed using the highersrder dgorithm on grid Al,  which is Cd, = 0.004967. 

can have a more adverse e f k t  on the accuracy of the higher-order algorithm. Fkiction 

drag results for case 3 are shown in F i  B.19. Compared to the grid A l  solution, 

the skin fiction obtained on grid Cl, using second-order approximations for the 

viscous te=, is in error by approximatdy 10%. The m r  is not reduced signiscautly 

even using grid B1 which has four times as many nodes. This is a good example of 

the nonlinear eff& diçcussed eariier when mixing components of dinerent spatial 

accuracies. 

The computation of friction drag is a m s t e p  process, the 6rst being the corn- 

putation of shear stress given by Equation 3.39. The second involves the actual 

integration of the surface shear-stress distribution. The accuracy of the shear-stress 

computation has a much larger &ect on the accuracy of the computed fiction drag 

than the integration of the shear-stress distribution. F'riction drag &ts for cases 

1 and 3, for the higher-order solution nsing the higher-order integration routine, are 

shown in TabIes 4.3 and 4.4. The &kt on accnracy using second- and fourthsrder 

approximations (Equations 3.40 and 3.41) for the nomal veiocity derivatives in Equa- 

tion 3.39 is examined. Third-order appIOOcimations are nsed for the ~@d metrics on 
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the airfoil surface. The r d t s  clearly indicate the importance of treating most t e m  

in a consistent manner. Simiiar results to the second-order r d t s  are obtained if 

fourth-order approximations are used for the velocity derivatives and second-order 

approximations are used for the surface grid metrics. The second-order three-point 

one-sided Merence operator (Equation 3.41) typicdy used for grid metric te- and 

differencing on the surface is found to be particularly susceptible to error ffom grid 

stretching. 

For the cases studied, the ciifference in integrated lift and friction drag values 

between the second- and third-order integration routines is smd .  The third-order 

integration routine improves the integrated pressure drag values by 0.5- 1% of the 

reference Cd, obtained on grid Al. 

4.2.7 Convergence rate and computational efficiency 

Density residual convergence histories for grid C, using the Spaiart-AlIrnaras tur- 

bulence model, are displayed in Figure B.20. Convergence using the Baldwin-Lomax 

modei is simiiar. In al1 cases, the two algorithms converge similarly for the ûrst three 

to four orders of magnitude reduction in residual, and the higher-order algorithm 

converges somewhat more slowly after that. Figure B.21 shows the drag convergence 

histories for the four cases. Convergence of lift and drag is typically achieved after 

about four orders of residual reduction on grid C, so the extra cost associateci 6 t h  

the higher-order aigorithm is quite small. 

For the solution of the thin-layer Navier-Stokes equations using a generaiized 

curvilinear coordinate transformation, the extension of ail terms to higher order can 

be accomplished very efficiently. The cost per grid node per iteration is increased by 

about 6%. Since the lift and drag convergence rates are not significantly afEkcted, the 

overaii cost increase on a given grid is about 6% relative to the second-order dg* 

rithm. Hence the computational effort required to achieve a given level of accuracy 

is greatly reduced using the higher-order dgorithm. In some cases, equident accu- 

racy is achieved in l e s~  than 1/16 the expense of the second-order dgorithm, which 

requires a much fher grid. 
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Element Upper h w e r  
Surface Surface 

Slat 5.00 - 
Main 0.97 11.0 
Flap 2.70 99.3 

TabIe 4.5: Tkansition locations for case 6 given as percentage of ekrnental chord. 

4.3.1 Overview of Test Case and Grid Details 

The test case examineci is Case A-2 from AGARD Advisory Report No. 303. Wmd 

tunnel data were measured for a twcdhensional supercriticd airfoil with high-tift 
devices and the mode1 designation is NHLP 2D. These data were obtained during the 

1970's as part of the National High Lift Programme in the United Kingdom. The case 

selected for examination hem is LIT2 whicb includes a 12.5%~ leading-edge slat and a 

3 3 % ~  single slotted flap, w k e  c is the chord length of the nested configuration. The 

slat is located in the optimum position at an angle of 25 degrees and the flap angle 

is 20 degrees. This geometry, which is typical of a takeoff configuration, is shown 

in Figure B.22. TORNADO results for this case were 6rst presented by Nelson et 

d. [BI. It shouid be noted that in reference [38], the bhnt traiiing edge of the flap 

is cl& by rotating the upper and lower surfaces through equd angles. The sharp 

points ou the lower suffice of the slat and main element are actually very s m d  blunt 

edges. The same coordinates are used in this study with the exception that the iower- 

surface blunt edges of the slat and main element (not referring to the trading edges) 

are also closed to a singIe point. A full set of coordinates for this case can be found 

in Appendix D. 

The flow conditions for this case, test case 6, are set at M, = 0.197, a Reynolds 

number of 3.52 x 106, and an angle of attack of 20.18". The transition points are 

tabuiated in Table 4.5. The transition for the l m  snrtace of the slat is fixed to 

the third n d e  kom the sharp point between the slat leading and trailing edges as 
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Grid Number of 
Nodes 

A 255,295 
B 183,721 
C 126,185 
D 72,837 
E 51.749 

Table 4.6: Multi-block grid densities. 

illustrated in Figure B.23. 

Five grids are used in this study, each of them generated independently with an 

H-mesh topology. Generating a sequence of grids, suitable for multi-element cases, in 

the fashion describeci in Section 4.2.1, would make the grid density of a grid A far too 

impractical. The solution domain for each grid is divideci into 27 blocks. The same 

domain decomposition is shared amongst al1 five grids and is shown in Figure B.24. 

The @ds are labeled as grids A through E. The grid densities are given in Table 4.6. 

Grid densities of individual blocks are outlined in Tables C.1- C.5 in Appendix C. 

Given that this is a high-lift case, the far-field boundary is placed at a distance of 

24 chords h m  the airfoil surf', twice the grid extent used for the single-element 

cases. The grid ceils at the far-field boundaries are a p p r h a t e l y  1 chord in length. 

Individual block detail is provideci for two reasons: 1) to aUow for precise reproduction 

of the grids by other researchers in the future, and 2) to give the reader a detailed 

account of the distribution of the grid points amongst the t h e  elements, noting that 

the grid density required for accurate results is different for each elernent. 

The dat requires special attention. At an angle of attack of 20.18", the pressure 

gradients neac the leading edge are quite Iarge. In fact, in Nelson et. al. [38], it 

was shown that at high angles of attack, very hi& flow gradients exist outside the 

boundary layer near the leading edge of the slat. Hence, given the finite number 

of grid points availabIe, it is felt that grids B through E require a cluster point in 

that region. The cluster point is located at  appraximately 14.7% dong the dength  

h m  the begining of side 1, block 2, to the trailing edge on the upper d a c e .  It is 
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-- - 

Table 4.7: Elementai drag components on grid A for case 6. 

Drag 
Component 

C4 

located just after the leading edge, with a spacing of 2 x 104c. The cluster point was 

not used in grid A both to avoid any influence on the reference solution fiom cluster 

points, and since the large number of points placed on the slat makes cluster points 

unneccesary for this grid. 

Trailig-edge clustering is set at 5 x 104c for al1 three elements. The traiiing-edge 

clustering is kept constant for aii of the grids. Given t hat this spacing is the srnallest 

of those used in the single-element cases, it is iinlikely to introduce any significant 

numerical enor. The off-wall spacing is also kept constant for d five grids at 10'~ 

chords. 

4.3.2 Test Case 6 - High-Lift Subsonic Flow 

The higher-order diietization scbemes implemented in CYCLONE and TOR- 
NAD0 are identical with one exception. The original second-order treatment of the 

diffusive terms within the Spalart-Ailmaras turbulence model is used. The higher- 

order treatment of those terms in TORNADO presented stabiiity problems which are 

likely related to the hmdling of block interfaces. The Spalart-Allrnaras turbulence 

model was exclusively used for this test case. Values for the Limiters, Vi and V,, used 

in Equation 3.15 in the rnatrix dissipation scheme were set to 0.01. 

The resuits for this test case are plotted in Figure B.25. The mors in lift coefficient 

are small. Nevertheless, similar to the results for test cases 4 and 5, the higher- 

order scheme, coupled with the Spalart-AIlmaras turbdence modeI, predicts lift more 

accurateiy than the secondader scheme on grids D and E. The mors in the drag 

components are much larger. Comparecl to the solution on g i d  A, the errors in the 

drag components for the highersrder d e m e  on grid D are less than 3% while the 

Higher-order 
Slat 

-0.7l975 

Second-order 
Slat 

-0.71929 
Main Element 

0.54096 
Flap 

0.22272 
Main Element 

0.54082 
Flap 

0.22311 
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Algorithm Slat Main Element Flap Complete Airfoil 
higher-order 2.9 5.1 2.3 10.3 
secondader 98.9 -34.7 -8.8 55.4 

Table 4.8: Elemental pressure drag error in counts on grid D for case 6. (Note: 
One count is equivalent to 0.0001 units in drag. The count errors are relative to the 
solution of each respective algorithm on grid A - see Table 4.7) 

Algorithm Slat Main Element Flap Complete Airfoil 
highersrder 0.2 -0.3 -0.5 -0.6 
secondsrder -1 .O -8.6 -3.9 -13.5 

Table 4.9: Elementd fnction drag error in counts on grid D for case 6. (Note: One 
count is equivalent to 0.0001 unit5 in drag. The count errors are relative to the 
solution of each respective algorithm on grid A - see Table 4.7) 

error in the secondsrder r d t s  for both pressure and fiction drag coefEcents on 

@d D exceeds 12%. The error in the drag components for the second-order scherne 

approaches 22% on grid E while the error in the higher-order d t  is still well behaved 

at approxhately 5%. 

IndividuaI drag components were plotted for single element cases in Section 4.2 

to avoid cancelation of errors between pressure and friction drag. When anaiyzing 

solutions about multi-eiement airfoiIs, the same care must be taken to avoid cance- 

lation error between elementai pressure and friction drag. For example, the pressure 

drag is negative on the slat and positive on the remaining two elernents. Elemental 

pressure and friction drag values for solutions on grid A are pmented in Table 4.7. 

The results in Table 4.7 provide a reference for the elementaI-drag errors presented 

in Tables 4.8 and 4.9 for solutions on grid D. A ben& of analyzing the data in this 

fashion is that it provides the reader with some insîght into which areas of the grid 

need to be refined if furthw improvement in accuracy is desired. The pressure-drag 

error on the slat and main element for the second-order solution is quite large. The 

opposite sign of the mors Iead to significant canceflation error as d. The elementai 

pressure- and friction-drag error for the higher-order solution is several times smaüer 

than those produceci by the second-order algorithm. 
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Table 4.10: Higher-order results for case 6. 

To ensure that the off-wall spacing of chords is sufficiently s m d  enough not 

to introduce significant numerid error, we introduce grid AA, Grid AA is identical 

to grid A except that the o f f - d  spacing is reduced to 5 x IO-' chords. The higher- 

order results on grid A and AA are shown in Table 4.10. The Werence between the 

two solutions is negligible indicating that the original choice for the off-wd spacing 

is adequate. For ail gxids, the y+ value at the 6rst point fiom the surface is less than 

one, having a maximum of 0.8 on the main eiement for grid E. 

Figure B.26 shows the experimental and computed surface pressure distributions 

for the NHLP airfoil. The computed resuit, using the second-order scheme on grid A, 

is very accurate, comparable to those presented by NeIson et. al. [38], using a some- 

what different grid configuration. A portion of the upper surface pressure distribution 

of the slat is shown in Figure B.27. The second-order scheme, on grid D, does poorly 

at computing the minimnm pressure. Similar results are found on the main element 

as weil. 

Figure B.28 shows boundary-layer velocity profdes at the traiIing edge of the flap. 

For the second-order solution on grid A, every third grid point is plotted. The profiles 

can be divided into four regions: 

1. the first 3% of chorci above the fiap surface corresponds to the flap boundary 

Iayer; 

2. the region between 3% and 10% of chord corresponds to the wake Erom the main 

element; 

3. the region be-n 10% and 18% of chord corresponds to the wake fiom the 

slat; 
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4. beyond 18% of chord above the flap surface, the flow slowly returns to free 

stream conditions 

Given the superior results presented thus far for the higher-order scheme, the higher- 

order result on grid A is taken as the reference solution. Region 1 appears to be 

adequately resolved for both discretization schemes, even on grid D. in region 2, the 

higher-order result on grid D is more accurate than the second-order result on grid 

A, a grid with more than 3 times as many nodes. In region 3, the error in the second- 

order result on Grid D is quite Iarge and increases in region 4. These slower velocities 

in the wake explain the larger drag values reported earlier. The second-order result on 

grid A and the higher-order result on grîd D provide similar accuracy in regions 3 and 

4. The second-order grid A result is siightly better in region 3 while the higher-order 

grid D result is siightly better in region 4. Nonetheless, the higher-order scheme is in 

excellent agreement with the reference solution using a grid with only 73,000 nodes, 

one third of the grid density of grid A. 

4.3.3 Convergence rate and computational efficiency 

Density residuai and drag convergence histories for grid D, are displayed in Fig- 

ure B.29. As in the single-element cases, the two algorithms converge simiiarly for 

the 6rst three to four orders of magnitude reduction in residual, and the higher-order 

aigorithm converges somewhat more slowly after that. in this case, the higher-order 

scheme takes approximately 33% more iterations than the second-order scheme to 

converge to within 0.2% of the converged drag. The higher-order algorithm, however, 

produces a solution that is far more accurate on grid D with the second-order scheme 
. 

requiring at least 3 times as  many nodes to produce simikir accutacy. 

The added computational cost of the higher-order scheme in TORNADO is similar 

to the added cost in CYCLONE. Compared to the second-order dgorithm, the cost 

per grid node per iteration is increased by about %, with no increase in memory 

usage. This is an important factor when considering extending TORNADO to 3D 

applications. The higher-order schme produces accurate results on relatively coarse 

&ds, thereby reducing mernory requhments and computational costs. Table 4.11 
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Grid Number of Mernos- Used 

Table 4.11: Memory requirements for TORNADO. 

summsrizes the memory requirements of TORNADO for the grid densities used in 

th& study. The higher-order scheme produces results on grid D within three percent 

of the solutions on grid A while only ushg 34 megabytes of memory. 
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Contribut ions and Conclusions 

We have prented a stable, accurate, and robust higher-order algorithm b r  aerw 

dynamic Bows, and, furthemore, we have compared its efficiency with that of a well- 

estabtished second-order aigorithm. The higher-order algorithm was implemented 

in both a single- and multi-block solver. With a few exceptions, al1 components of 

the spatial discretization, including the convective and viscous terms, the numerical 

boundary schemes, the numerical dissipation, and the integration technique used to 

calculate forces and moments, have been raiseci to a levd of accuracy consistent with 

third-order global accuracy. The turbulence models were also addresseci, with most 

of the terms raised to a highet order of accuracy. A detailed quantitative evduation 

of the higher-order algorithm was performed with emphasis on accuracy, robustness, 

and computational cost. 

Grid convergence studies demonstrate that the new algorithm produces a suù- 

stantial reduction in the numerical error in drag in comparison with the secondader 

algorithm for both subsonic and transonic flows. The results show that the higher- 

order dgorithrn produces a smaller error on a given grid than the second-order algo- 

rithm produces on a grid with several times as many nodes. Hence the higher-order 

dgorithm can provide equivalent acmacy with a large reduction in computing ex- 

pense. For example, using the higher-order discretization, numerical errors of lm 

than 2 -3% can be obtained in the computation of lift and drag components for grids 

with less than 15,000 nodes for singleelement cases and less than 73,000 nodes for a 
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three-element aidoil. The second-order algorithm required 3-4 times as many nodes 

to achieve similar accuracy. 

Compared to the second-order algorithm, the increased cost per grid node per 

iteration, when using the higher-order aigorithm, is approximately 6- 7%. There is no 

penaIty in memory usage. For single-element cases the Iift and drag convergence rates 

were very similac for both discretization schemes, while the higher-order aigorithm 

converges approximately 33% slower for the multi-element case. The second-order 

algorithm, however, requires 3-4 times as many nodes as the higher-order algorithm 

to produce similar accuracy. Both schemes prove to be equally robust. 

A key aspect of the higher-order algorithm is the consistency of the discretiza- 

tion with respect to accuracy. Accuracy was significantly compromised when low- 

order and higher-order te- were mixed in some areas of the discretization. In 

this work, aimost aii approximations are consistent with third-order global accuracy. 

The exceptions are the hrst-order treatment of the convective terms in the Spalart- 

Allmaras turbulence model, the second-order differences used for the diffusive tems 

in the Spalart-Allrnaras model in TORNADO, and the first-order numerical dissi- 

pation added near shocks. The grid convergence studies provide an accurate means 

to compare the discretization schemes. Comparison of d a c e  pressure and velocity 

boundary-layer profiles on severai grids reveaied a number of items: 

It was shown that accuracy was not adversely affected by the first-order terms. 

In fact, very accurate resuits were obtained for transonic cases without clus- 

tering the grid near the shocks despite using first-order dissipation to capture 

shocks. 

The grid metrics play a critical role in achieving accurate resdts. The poor re- 

sults fiom the third-order upwind scheme indicate that the metric terms should 

be raised to the same level of accuracy as the convective tenns. 

The higher-order discretization of the viscous terms accounted for approxi- 

mately 10% of the overall error reduction achieved with the higher-oder al- 

gorithm relative to to the second-order scheme. 
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Prior to this work, whether or not more accurate past-processing mas necessary 

to obtain accurate force and moment coeficients needed to be addressed. The 

higher-order computation of shear stress proved critical to the accurate predic- 

tion of friction drag. The higher-order force integration provided only a smaü 

benefit for the cases examineci. 

5.1 Recommendat ions for Future Work 

This investigation suggests a number of avenues for hture work, including the 

following: 

Solutions to various flows were presented with numericd errors of less than 3% 

on relatively coarse grids. It is not clear whether it is necessary to progress to 

even higher orders of accuracy. The n& step should be to determine, and ad- 

dress if practical, the largest remaihg source of numencal error. For example, 

the effect of grid singuhrities on solution accuracy should be investigated. 

0 Grid convergence studies were used to compare the higher-order algorithm to 

a number of discretization schemes, aii of which are applicable to solving the 

Navier-Stokes equations on structureci grids. It would be informative to see 

similar studies to assess the dative accuracy of various discretizations on un- 

structureci grids. 

0 The ability of the higher-order algorithm to obtain accurate results on relatively 

coarse grids has been demonstrated. Extension to three dimensions should be . 

carried out. 

0 The higher-order algorithm shouid be combined with modern convergence ac- 

celeration techniques such as mdtigrid or GMRES. 

0 There remains a need for efiicient error estimation techniques. 
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Appendix A 

Circulation Correction 

One generally assumes that the Bow at the far-field boundaries is uniform and 

mets  freestream conditions. if those boundaries are placed close to a lifting air- 

foil, however, disturbances Gom the airfoil surface may not have settled d o m  to 

free-stream conditions by the t h e  they reach the far-field boundaries. Hence, im- 

posing free-stream conditions under those circumstances muid undou btediy affect 

the physics of the fiow. One way to aileviate this problern is to place the fa-field 

boundaties very far away h m  any Iifting bodies. That solution is impractical since it 

would require many more grid nodes. Pulliam [41j shows that boundaries as much as 

96 chords away are needed to mininiize the effect of the boundark on the accuracy 

of the solution. FolIowing the work of Salas et al. [51], Pulliam added a compressible 

potential vortex soIution as a perturbation to the freestream velocity giving 

where r = ~M,CC~, c is the chord of the aidoil, Ci is the c&cient of Mt, M, the 

freestream Mach number, o the angle of attack, 8 = J- and T and O are the 

polar coordinates to the point of application on the far-fidd boundary relative to the 

quarter-chord point on the airEoiI chord Iine. The speed of sound is aIso corrected to 
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enforce constant Ereestream enthalpy at the boundary as foiiows: 

Using this fa-field vortex correction, Zingg [66] was able to produce very good results 

in drag on gcids with a grid extent of 12 chords. The r d t s  were compareci to 

solutions obtained on grids with far-field boundaries set at 96 chords. 
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Appendix B. Figures 

Figure B.1: Error in force integration aigorithm. Note: error is realtive to andytical 
lift and drag coefficients which are Cl = 1.218153560 and Cd = 0.0. 



(a) Close-up of NACA 0012 airfoi (Grid Cl). 

(b) Close-up of RAE 2822 airfoi (Grid C2). 

Figure B.2: Airfoil geometries and sampIe @cis used with CYCLONE. 



Appendix B. Figures 

Figure B.3: Grid convergence study for case 1 using grid family 1 (Baldwin-Lomax 
model) . 



Figure B.4: Grid convergence study for case 1 using grid family 1 (SpaIart-Aharas 
model). 
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Figure 8.5: Grid convergence study for case 2 using grid family 1 (BaIdwin-Lomax 
model) . 
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Figure B.6: Skin-friction distribution near leading-edge, case 2 (Baidwin-Lomax) . 

Nondimensional Velocity 

Figure B.E Boundary-layer veiocity profles on the upper dace at 85% chord, case 
2 (Baldwin-Lomax) . 



Appendix B. Figures 

Figure B.8: Boundary-Iayer proâIes of u + = t  vs. y+=- uw on the upper surface at 
85% chord, case 2 (Baldwin-Lomax). 



Figure B.9: Grid convergence study for case 3 using grid farnily 1 (Baldwin-Lomax 
model). 
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Figure B.lO: Surface pressure distribution for case 3, computed on grid Cla (Baldwin- 
hmax) .  



Figure BAI: Gnd convergence study for case 3 using grid family 2 (SpaIart-Ailmatas 
model). 



Appendix B. Figures 

Figure B.12: Grid convergence study for case 4 using grid M y  2 (Spalart-Aiimaras 
modei) . 



Figure B.13: Grid convergence study for case 5 using grid family 2 (Spalart-Aharas 
model) . 



Appendix B. Figures 

Figure B.14: Surface pressure distribution for case 5, computed on grid C2 (Spalart- 
Aumaras modd). 



Nondimensional Velocity 

Figure B.15: Boundary-1ayer protiie for case 5, upper d a c e  at 95% chord (Spalart- 
AlIrnaras rnodel). 



' Appendix B. Figures 

Figure B.16: Surface piemire distribution for case 4, computed on grid Cla (Baldwin- 
Lomax model). 



Figure B.17: Effect of viscous t e m  on accuracy of higherdrder algorithm for case I 
(Baldwin-Lomax model) . 
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Nondimensional Velocity 

Figure B.18: Boundary-layer profle for case 5, upper surface at 95% chord (Spalart- 
Ailmaras). 

Figure B.19: Effect of viscous terms on acxuracy of higher-order algorithm for case 3 
(Baldwin-Lomax model). 
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(a) Case 1 - Grid Cl (b) Case 2 - Grid Cl 

(c) Case 3 - Grid C2 (d) Case 4 - Grid C2 

Figure B.20: Residual convergence histories (Spalart-AlIrnaras model). 
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(a) Case 1 - Grid Cl (b) Case 2 - Grid Cl 

(c) Case 3 - Grid C2 (d) Case 4 - Gnd C2 

Figure B.21: Drag convergence histories (Spalart-Ailmaras model) . 



Figure B.22: High-iift test case A2. 
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Figure B.23: Lacation of fixeci transition point on lower d a c e  of slat for case 6. 

Figure B.24: Mdti-bIo& decomposition with block number for case 6. 



Figure B.25: Grid convergence study for case 6. 
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Figure B.26: Pressure distribution for the NHLP 2D cofiguration LIT2 (case 6). 

Figure B.27: Pressure distribution on upper d a c e  of slat for case 6. 



Figure B.28: Boundary-layer proue for case 6, upper surface of flap at trailing edge. 
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Figure B.29: Density cesidual and drag convergence b r y  on grid D for case 6. 
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Multi-block Grids 



I - 7  I 
- - 

[ totai nodes 1 255,295 

Block 
1 

Table C.1: Block dimensions for grid A. 

Block Dimensions (c x 7) 
65 x 161 



Table C.2: Block dimensions for grid B. 

I 

BIock 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 

totd nodes 

Block Dimensions (c x 9) 
61 x 129 
177 x 129 
169 x 129 
65 x 129 
49 x 129 
61 x 93 
53 x 93 
53 x 93 
73 x 93 
169 x 93 
65 x 93 
49 x 93 
61 x 77 
53 x 77 
53 x 77 
109 x 77 
69 x 77 
35 x 77 
65 x 77 
49 x 77 
61 x 65 
53 x 65 
53 x 65 
109 x 65 
69 x 65 
65 x 65 
49 x 65 
183,721 



Block 1 Block Dimensions (c x q)  

Table C.3: Block dimensions for grid C. 



Block Block Dimensions ({ x 77) 

1 49 x 81 
2 I l l  x 81 
3 97 x 81 
4 41 x 81 
5 33 x 81 
6 49 x 57 
7 33 x 57 
8 33 x 57 
9 49 x 57 
10 97 x 57 
11 41 x 57 
12 33 x 57 
13 49 x 49 
14 33 x 49 

Table C.4: Block dimensions for grid D. 



13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 

total nodes 

Bk& Dimensions (c x q)  
42 x 69 

Table C.5: BIock dimensions for grid E. 
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NHLP Mult i-element Airfoil 

Coordinat es 



Table D.1: NHLP sIat coordinates. 



Table D.2: NHLP Main eiement coordinates. 

... continued on next page 



Appendix D. NHLP Mufti-eiement Airfoi1 Coordinates 

Table D.2: NHLP Main 

... continueci on next page 



Table D.2: NHLP main element coordinates. 



Appendix D. NIEP Multi-dement M o i l  Coordinates 

Table D.3: NHLP fiap coordinates. 




