The more you measure...

...the more you achieve

Your applications are our focus...

- With more than
 - 100.000 channels
 - In different applications
 - worldwide,

the MGCplus system has achieved acceptance as a measurement standard.

- The wide spectrum of
 - supported transducers,
 - fieldbus connections and
 - standard PC interfaces

are some of the features, which indicate that it is a truly integrated measurement device

Hottinger Baldwin Messtechnik GmbH

R&D

- 24 Bit ADC on every channel
- Sample Rates up to 19.2kHz
- Parallel and simultaneous sampling
- Three independent sample rates
- High Speed Data Transfer via Ethernet & USB

Test Rigs

- All Transducers supported
- Simultaneous DAQ via Ethernet, USB Profibus, CAN
- Several PC's can be simultaneous connected to an MGCplus
- Scalable System
- Comprehensive Trigger Facilities

Calibration

- Highest precision (0.0025% accuracy class – ML38)
- Worldwide references in national calibration laboratories
- Dynamic calibration through simultaneous sampling
- Digital filter with high damping (16th order on ML38)

Manufacturing

- Press Fit Monitoring
- Fieldbus support (ProfibusDP, CAN)
- Digital I/O, PLC compatible
- Embedded SoftPLC (ML70)

Mobile Data Acquisition

- Intelligent Data Reduction
- CANBus support
- Simultaneous acquisition of GPS Data
- Simultaneous DAQ to hard disk and PC
- Power supply from 8V to 58V

Experimental Stress Analysis

- Full cable influence compensation
- Built-in completion resistors
- Patented transducer identification (T-ID[™], TEDS)
- Online Rosette Calculation

Get Flexible

- Configure your own system. **Choose your**
 - Housing,
 - Connection boards and
 - Measuring cards.
- You need a display and a communication processor ? No problem:
 - System Expansion is always possible.
- Best of all...
 - You can do it yourself !

MGCsplit

Environmental Conditions

- MGCsplit works in sunny, icy, windy, high and low temperature conditions, in dirt and mud and in high humidity
- Shockproof metal enclosure
- IP65 protection permits installation directly on the test object
- Temperature range between –30°C and +70°C
- Reliable gas-proof plugs
- Galvanically isolated inputs

For Mobile DAQ

- Stand alone storage with a PC Card hard disk or flash card
- Can be operated by non-skilled personnel
- Connection to base station via wireless Ethernet or GSM
- GPS measurement for position and true velocity
- Saving evaluation time through
- intelligent data compression
- Enhanced Confidence in Data (ECID)
- by storing all measurement
- parameters together with the data:
- Full traceability of tests even years later

MGCsplit

Typical MGCsplit system

Expand a basic MGCplus unit with MGCsplit modules. Simple expansion within a minute

Physical Quantities

HBM-Transducer Conversion principle					MGCplus										Spider8		PME			DigiClip					
Physical quantity	Measured quantity			(2H 009	Sin (2H SL	225 Hz) B	4.8 kHz)	4.8 kHz / 9.6kHz)		N	4.8 kHz)		Spe	ecial	CANHEAD (00 Hz, square)	4.8 kHz)	140	600 Hz)		600 Hz)	4.8 kHz)	-	4.8 kHz)/DC	4.8 kHz)/DC	(2H 009)
		ВС	ЫС	CF (CF (CF (CF (CF (DC	CF (CF (CF (DC	CF (ВС	CF (CF C		CF (CF (CF
		ML01B	ML10B	ML30B	ML35B	ML38B	ML50B	ML55B (S6)	ML60B	ML801B	ML455	ML460	ML70B	ML/IB(56) ML78B	CB1014-XXX	SR55	SR01	SR30	MP01	MP30	MP55	MP60	MP80	MP85	DF30CAN DF30DP
Force, Pressure, Torque, Load, accel.	Resistive full bridge		X	X		X		X		X	X					X		Х		X	X		X	Х	Х
	Resistive half bridge		X					X		X	X					Х		Х			X		X	Х	
Strain Gauge	Resistive quarter bridge									X					Х			Х							
Displacement	Inductive half bridge						X	Х			X					Х					X		X	Х	
	Inductive full bridge						X	Х			X					Х					X		X	Х	
	LVDT										X										X		X	Х	
	Piezoresistive		X																						
	Passive piezoelectric	Х																							
	Current fed piezoelectric	Х	X							X															
Torque, Rotation freq.	Impulse / frequency								Х			X				Х						X	X	Х	
	PWM, Pulse Duration											X													
	Potentiometer									X													XĽ	Х	
	Themocouple	X							_	X							Х		X				\perp		
	Thermoresistive				X				_	X							Х		X				\perp		
WA-Displacement	Voltage	X							_	X						Х	Х	X	X				<u>X</u>	Х	
WA-Displacement	Voltage (with transducer supply)									X													\rightarrow		
	Current	X						_	_	X		_					X		X				_	_	
	Digital output							_	_				X	X						\rightarrow	\rightarrow	_	4		
	Digital input	_											X	<u>X</u>						\rightarrow	\rightarrow	\rightarrow			
	Analog Out	Х	X	X	X		Х	Х	Х				X	X						_	_		4		
Torque (112), Force (C16i)	CAN												X	x							_	_	4		
FII-LOad Cell	RS232/RS422/RS485												X												
	551																						X	Х	

Assemble your MGCplus system...

	Single Channel Amplifiers										
	ML01B	ML10B	ML30B	ML35B	ML38B	ML50B	ML55B ML55BS6	ML60B			
AP01i	φφ	ΔR 1,45,B1 1,45,B1	\diamond	- 0		\diamond	()	ŢŢ.			
AP03i	фф		\diamond			\diamond	()	ΨĻ			
AP07/1								13⊺0 ↓↓↓↓ min ⁻¹ T4Wa			
AP08	-101-	-0-									
AP09	>¢¢										
AP11i	фф	 ↓ ↓ ↓ ↓	\diamond			\diamond	\$\langle\$		resistive fullbridge	Voltage	Legend- ∬⇔ digital output
AP12	фф	ΔR 1,45,81 1,45,81	\diamond	-07		\diamond	(2) (145.81)	1310 ↓↓↓↓ min ⁻¹ T4Wa	resistive halfbridge	Current	$\begin{array}{c} \downarrow \\ \hline \\$
AP13i	фф	 ↓ □ ↓ □	\diamond			\diamond	()		inductive halfbridge	Current fed piezo- electric transducer	POPPP CAN CAN
AP14									$\frac{\Delta R}{ U }$ piezoresistive transducer	13110 Torque T1, T4, T5, TB1 min ⁻¹ rotay speed T4WA	serial I/O RS232, RS422, RS485 I/O
AP17								T10F(S)	Thermocouples		200Ω-5000Ω
AP18i	-DF	-0-							,	+++	

Assemble your MGCplus system...

	Multi Channel Amplifiers									
	ML801B	ML455	ML460							
AP401	φ									
AP409	⇒									
AP418i	-0-									
AP455i AP455iS6										
AP460i			ŢŢŢ							
AP801 AP801S6	φ									
AP809	⇒									
AP810	$\langle \diamondsuit$									
AP814Bi										
AP815i										
AP835										
AP836										

Assemble your MGCplus system...

	Special Multichannel modules									
	ML70B	ML71B ML71BS6	ML74	ML77B	ML78B					
AP71	CAN	CAN								
AP72	serial I/O									
AP74			CANHEAD							
AP75										
AP77				<u> </u>						
AP78										

				-	
\diamond	resistive fullbridge	φ	Voltage	Į⇒	digital output
K	resistive halfbridge	¢	Current	⇒∥	digital input
1 S. S. J.	resistive quarterbridge	HOH	passive piezoelectric transducer	₽	analogue output
\rightarrow	inductive halfbridge	-D¢	current fed piezo- electric transducer	99999	ProfiBus
\diamond	inductive fullbridge	13110	Torque / rotary speed T3T10	CAN	CAN
- (<mark>∆R</mark>	piezoresistive transducer	(1,4,5,B1	Torque T1, T4, T5, TB1	serial I/O	RS232, RS422, RS485 I/O
- "/-	Thermo resistors PT100, PT1000	min⁻¹ T4Wa	rotary speed T4W A		Potentiometer 200Ω-5000Ω
⇒	Thermocouples	ΠŢ	impulse / frequency	6	LVDT

Assemble your MGCplus system

The amplifiers

Parameter	Single Chan.	Multi Chan.
Sample Rate [Hz]	19200	2400 (each channel)
Remote Contacts	Yes	Νο
Online DSP with predefined fctns. (PV, CPV, HullCurve)	Yes	Νο
Limit Value Sw.	4	4
Analog output	Yes	Νο
Limit Value contacts	Yes	Νο
Zero, Tara, Filter	Yes	Yes

The amplifiers

Parameter	Single Chan.	Multi Chan.	CAN Head
Sample Rate [Hz]	19200	2400 (each channel)	25 300 (each channel)
Remote Contacts	Yes	No	No
Online DSP with predefined functions. (PV, CPV, Envelope curve)	Yes	Νο	No
Limit Value Switch	4	4	No
Analog output	Yes	No	No
Limit Value contacts	Yes	No	No
Zero, Tara, Filter	Yes	Yes	Yes (no Tara)

Multichannel Carrier Frequency

- Surpress systematic noise
- Eliminate Drift effects
 - Thermo Offset Voltages
 - General Drift Effects
- Until 2004 only Single Channel Solution !
- Need for higher densitiy of CF channels
 - High channel amount of displacement transducers (WA electronics unsufficient solution)
 - High channel count for SG applications in noisy environment (Railways applications)

Hottinger Baldwin Messtechnik GmbH

Embedded Intelligence

- Realtime calculation directly inside MGCplus
- Soft PLC with Digital I/O, analog output, CAN I/O, RS232C/RS485
- Programmable with standardized languages IEC 61131-3
- Program development system
 CoDeSys included in delivery
- Full access and control of all MGCplus resources

PC connections to MGCplus: Ethernet

Ethernet TCP/IP, 10/100MBit/s

- CP42: 307.200 MV/s
- CP22: 153.600 MV/s
- Network Hardware inside !

Connection

- Cross Cable
- (Patch Cable, if PC has integrated Switch or Hub)

- Typical High Channel Count Solution
- Best Software: catman enterprise
- Clients can work with data during DAQ without risk for the DAQ process

PC connections to MGCplus: Multi-Client

Multi-Client Ability with communication processor CP42

- 5 Ethernet clients / CP42
- I USB client
- I RS232C client
- I GPIB client

PC connections to MGCplus: Worldwide Access

Software for MGCplus

MGCplus Assistant

Signal Conditioning Setup Included in delivery

- Easy setup of (multiple) MGCplus and MGCsplit systems
- Several User Profiles
- Diagnosis and service functions

Non HBM software

- _
- DIAdem[®] (NI)
- BEAM Beam (AMS)

LabView®, DasyLab®(NI) via ActiveX®

- Data Importer
 - jBeam
 - MatLab
 - MEA-files (MGC+)
 - Catman 4.5 / 5.0

Software for your MGCplus

- catman[®] easy simple software for acquiring measurement data
 - Get DAQ results quickly thanks to modern, intuitive user guidance
 - Library for exp. Stress analysis
 - Graphical data analysis
 - Export to commonly used formats (Excel, ASCII, DiaDem[™])

catman[®] professional

The complete solution for measurement, visualization, analysis and documentation

- Free definition of individual interfaces for visualization and logging
- Math. Evaluation (Signal analysis, statistics etc.)
- Automation by means of sequence macros
- Develop your own applications with catman[®] script
- Open ActiveX interface

 catman[®] enterprise
 Easy configuration of up to 10.000 channels

- common access to measurement data in client/server network
- Online distribution of Data to multiple client PC's
- Comprehensive Trigger functions
- Logging entire measurement sequence in a logfile
- Trend analysis

Thanks...

... for your attention

