Open Systems Integrated Modular Avionics
the real thing

René L.C. Eveleens
National Aerospace Laboratory NLR
P.O. Box 90502
1006BM Amsterdam

RTO SCI LS-176: “Mission System Engineering”
November 2006
Open Systems Architecture

overview
- definition

- trends in avionics architectures
 - the past
 - today
 - the future

- advantages
- disadvantages

- conclusions
Open Systems Architecture

definition

- architecture (design) whose specifications are ***public***
- this includes officially approved standards as well as privately designed architectures whose specifications are made public by the designers
- the opposite of open is **closed** or **proprietary**
Trends in avionics architectures: the past

SYSTEM1
SYSTEM2
SYSTEM3
Trends in avionics architectures: the past

Avionics systems in the past
- “federated” avionics systems
 - independent avionics components with specific function
 - systems together build up aircraft functionality
- line replaceable units (LRU’s)
- intrinsic partitioning, one processor per system functionality
Trends in avionics architectures: the past

interf{aces
 • dedicated I/O
 – ARINC 429 (point to multi-point, asynchronous)
 – discrete signals
 – analog signals
Trends in avionics architectures: the past

disadvantages

- specific function for each box
- specific hardware and software
 - obsolescence of hardware components
 - little re-use of technology
- weight and power consumption
 - shielding per unit
 - power per unit
- maintenance
 - spare parts
 - not interchangeable
Trends in avionics architectures: today
Trends in avionics architectures: today

avionics systems today

- integrated modular avionics (IMA)
 - line replaceable modules (LRM's)
 - proprietary standard physical module layout (interface, form, fit)
 - proprietary standard modular housing (LRU)
- intrinsic partitioning, one processor per system functionality
Trends in avionics architectures: today

interfaces

- dedicated I/O still used (robustness, availability)
- backplanes
 - ARINC 659 or proprietary busses
- system busses
 - ARINC 629 (lock step, distributed control)
 - MIL-STD 1553 (command / response using bus controller)
 - proprietary busses
Trends in avionics architectures: today

disadvantages

- specific function for each LRM
 - auto-pilot module, flight management module, etc.
 - not interchangeable
- specific hardware and software: obsolescence of components
- proprietary standards
 - changes are expensive
 - supplier monopoly
 - no competition
Trends in avionics architectures: the future

platform

application
Trends in avionics architectures: the future

Avionics systems in the future
- **Open systems** integrated modular avionics
- Generic processor hosting several system functionalities
- Partitioned software distributed across the system
- Common digital modules / units with standard I/O
Trends in avionics architectures: the future

CPU / IO module
Trends in avionics architectures: the future

interfaces

- packet switched networking
 - e.g. Avionics Full Duplex Switched ethernet (AFDX)
 - all modules / units can talk to each-other (flexible!)

- dedicated I/O
 - interface to legacy equipment
 - interface to dedicated sensors / actuators
 - all translated to standard network !!!
Trends in avionics architectures: the future

interfaces
- packet switched networking (e.g. AFDX)
 - local area network (LAN)
Trends in avionics architectures: the future

Physical communication

Logical communication

Open systems IMA
Trends in avionics architectures: the future

open systems IMA: "rack" oriented
- the rack is a Line Replaceable Unit (LRU)
- contains Line Replaceable Modules (LRM)
 - standardized form, fit, function
 - backplane communication
- rack provides environmental protection and backplane
- disadvantage: modules not field-replaceable
Trends in avionics architectures: the future

open systems IMA: "unit" oriented
- each module is a Line Replaceable Unit (LRU)
- the unit has its own environmental protection
 - housing / EMC / lightning
 - disadvantages with respect to cost / weight
- units are connected by avionics bay wiring
Trends in avionics architectures: the future

standardized digital modules / units
- host several aircraft applications (software)
- fully isolated software partitions
- standardized operating system
 - scheduling, communication, health monitoring
- hardware resource sharing
 - processor (CPU)
 - memory
 - communication and I/O
- application portability
 - application programming interface (API)
Trends in avionics architectures: the future

fault tolerance

- providing fault detection, localization and isolation
 - health monitoring in each partition
 - global fault manager identifying the problem
 - "brick-wall" software partitioning

- reconfiguration possible
 - with static predetermined configurations (determinism)
 - "hot" or "cold" spares
Open Systems Architecture

definition (again)

- architecture (design) whose specifications are ***public***

- this includes officially approved standards as well as privately designed architectures whose specifications are made public by the designers

- the opposite of open is **closed** or **proprietary**
Open Systems Architecture

advantages

• standard building blocks are interoperable
 – Plug-N-Play
 – mix components from different suppliers
• reduced obsolescence
 – replace hardware modules
 – re-use expensive (mission) software
• third-party add-on development
 – public specifications
• flexible design
 – configuration tables
Open Systems Architecture

disadvantages

- **intellectual property rights !!!**
- standardisation contradicts high performance
- who takes integration responsibility?
 - multiple suppliers ("not my problem!")
 - qualification / certification
- complexity
 - a lot of parameters need to be managed
- use of third-party equipment & software
 - is documentation accurate and complete?
 - not easy to transfer all design data
conclusions

• new technology for avionics architectures required
 – hardware component obsolescence
 – architectures today is mostly proprietary

• new trend is "open systems"
 – common digital modules / units with operating system
 – aircraft functionality performed by the software applications
 – interfacing trend towards ethernet (e.g. AFDX)

• be careful if a supplier states to have an “open system”
 – is it really a public standard that is used?
 – what is in it for you?