

((Content Graz
	•	Definition of thermal turbomachinery
	٠	Design details of steam turbine, gas turbine and compressors
	•	From thermodynamics to a 2D blade geometry
		Velocity Triangle
		Euler equation
		Efficiency definition
		Dimensionless parameters
		Blade number
	٠	3D flow and 3D blades
	٠	Loss estimation
	•	Leakage flow and sealings

Siemens N-class steam turbine

ce: Sie

Siemens N-type turbines are used for normal to medium live steam conditions (100 bars, 500 °C). This type of turbine has a reaction-type design that has proven itself many times over. N-type turbines can be either condensing or backpressure machines. The standard configuration allows up to two controlled extractions and/or several uncontrolled extraction points.

Specifi	c Stage Work (Euler Equation)	Graz University of Technology
	$(h_{2} + \frac{c_{2}^{2}}{2}) - (h_{0} + \frac{c_{0}^{2}}{2}) = -L_{u}$ $h_{0} - h_{2} = \Delta h' + \Delta h'' = \Delta h$ $L_{u} = \Delta h + \frac{c_{0}^{2} - c_{2}^{2}}{2} = \Delta h' + \Delta h'' + \frac{c_{0}^{2} - c_{2}^{2}}{2} = h_{t_{0}} - h_{t_{2}}$ $L_{u} = \frac{1}{2}(c_{1}^{2} - c_{2}^{2} + w_{2}^{2} - w_{1}^{2} + u_{1}^{2} - u_{2}^{2})$ $w_{1}^{2} = c_{1}^{2} + u_{1}^{2} - 2u_{1}c_{1}\cos\alpha_{1}$ $w_{2}^{2} = c_{2}^{2} + u_{2}^{2} - 2u_{2}c_{2}\cos\alpha_{2}$ $L_{u} = u_{1}c_{1}\cos\alpha_{1} - u_{2}c_{2}.\cos\alpha_{2} = u_{1}c_{u1} - u_{2}c_{u2}$	
Axial flow at cons High circumfere speed) leads to Source: Jericha LN TU Graz	stant radius: L _u = u ∆c _u ential speed (large diameter, high rotational high specific work!!!	

Inner I	Efficiency
Inner work: $L_i = L_u - \sum \Delta L = L_u$ with ΔL_{sp}^{i} Stator leakage loss ΔL_{sp}^{i} Rotor leakage loss ΔL_R Wheel friction ΔL_V Ventilation loss	$-\Delta L_{sp}' - \Delta L_{sp}' - \Delta L_R - \Delta L_V$
Inner efficiency without exit loss:	$\eta_i = \frac{L_i}{\Delta h_s + \frac{c_o^2 - c_2^2}{2}}$
Inner efficiency with exit loss:	$\eta_i^* = \frac{L_i}{\Delta h_s + \frac{C_0^2}{2}}$
Isentropic inner efficiency:	$\eta_{si} = \frac{\Delta h_i}{\Delta h_s} \qquad \Delta h_i = \Delta h - \Sigma \Delta L$
rce: Jericha LN TU Graz	

