

" Control Techniques for Aerospace Systems "

Dr. Vaios J. Lappas v.lappas@surrey.ac.uk

Research Fellow University of Surrey May 7, 2003

METU-AERO

Contents of Presentation

WWW.SSTL.CO.UK

- 1. Satellite Classification
- 2. Introduction to Attitude Control Systems (ACS)
- 3. Slew Rates, Agility, Slew Rate Requirement
- 4. Motivation
- 5. CMGs for Small Satellites ?
 - Background
 - Simulations
- 6. CMG Sizing for a Microsatellite
- 7. Developing a Low-Cost, Miniature Single Gimbal Control Moment Gyro (SGCMG) for Small Satellites
 - CMG Mk.I
 - CMG Mk.II
 - Electrical Power Consumption Comparison
- 8. BILSAT CMGs
- 9. Future Work

10. Conclusion

Dr. Vaios J. Lappas

SPACE AT SURREY

Minisatellites - Microsatellites - Nanosatellites (platforms & payloads) • 134 professi

- Satellite Communications
- Remote Sensing
- Space Science
- Technology Demonstration

POSTGRADUATE EDUCATION

Research Degrees (MSc, PhD) Short Courses for Industry

Commercial Exploitation

Surrey Satellite Technology Ltd

- 134 professional staff
- 8 faculty
- 27 PhD researchers
- 18 visiting staff
- dedigated space building

1.0 Satellite Classification

Group Name	Wet Mass	
Large satellites	>1000 kg	Medium-Large Satellites
Medium satellite	500-1000 kg	
Mini satellite	100-500 kg	
Micro satellite	10-100 kg	
Nano satellite	1-10 kg	Small Satellites
Pico satellite	0.1-1 kg	
Femto satellite	<100 gr	

UoSAT-12 Minisatellite Enhanced Microsatellite

SNAP Nanosatellite

- Attitude Control Systems (ACS): Orientation of a spacecraft in a particular direction (pointing) during a mission, despite external disturbances
- Need to know s/c attitude (Determination) and then point using an actuator (Control) to desired target
- Focused on:
 - Low cost, power, mass, volume
 - Avoiding using moving parts
- Main actuators:
 - Magnetic torquers/magnetometer
 - Momentum Wheels, Reaction Wheels
 - Thrusters
- Accuracy: 0.1-5°
- Slew rates: 0.1-0.5°/s

- Current Small Satellite slew rate: 0.1-1°/s
- Need to increase slew rate by an order of magnitude $(1-10^{\circ}/s)$
 - Dictated by future missions:
 - Stereo-imaging, tactical imaging (military imaging)
 - Interplanetary probes, formation flying
 - Commercial imaging
 - Technology Development
- Difficult to accomplish with current actuators (reaction/momentum wheels)
 - Large motors/discs
 - Power, volume, mass constraints
- Agility: High degree of spacecraft manoeuvrability
- Agility: High spacecraft slew rates Dr. Vaios J. Lappas

3.0 Agility (II)

- Agility substantially increases the operational envelope and efficiency of spacecraft
- Considerable increase in the return of earth and science mission data
- Direct increase in commercial & scientific value of mission

WWW.SSTL.CO.UK

Tactical Imaging & Tracking Moving Objects, Commercial Imaging

WWW.SSTL.CO.UK

Formation Flying, Satellite/Space Station Inspection

Dr. Vaios J. Lappas

Asteroid Missions-Agility

AFFORDABLE ACCESS TO SPACE

Agility for Small Satellites

Attitude Determination and Control Systems (ADCS)

- AFFORDABLE ACCESS TO SPACE
 - Key Subsystem of Spacecraft
 - Important for stability and pointing
 - Think of a person taking a picture with a camera (blurry pictures if not stable)
 - ADCS Systems are complicated:
 - Fusion of software/hardware components
 - Need electronics/aerospace/controls principles
 - Brief overview of ADCS components:
 - Stabilisation
 - Sensors for attitude determination
 - Actuators

Spacecraft Stabilisation

WWW.SSTL.CO.UK

Dr. Vaios J. Lappas

Sensors for Attitude Determination

AFFORDABLE ACCESS TO SPACE

BEI GYROCHIP™ Model QRS11 Micromachined Angular Bate Sensor

Star Camera

WWW.SSTL.CO.UK

GPS

Sun Sensor

Gyros

Actuators for Attitude and Orbit Control

WWW.SSTL.CO.UK

CMGs

Thrusters

WWW.SSTL.CO.UK

ADCS

3.0 Agility-Slew Rate Requirement

WW.SSTL.CO.UK

- Assumptions:
 - Average 3°/s slew requirement (30° in 10s)
 - Use SSTL Microsatellite platform throughout analysis

- SSTL actuators: 3-20 mNm
- ACS based on RWs :
 - 10% of spacecraft mass
 - 40% of required torque

Dr. Vaios J. Lappas

WWW.SSTL.CO.UK

Motivation:

- Required slew rate can't be supplied efficiently by current technologies
- Need to develop an alternate, more capable actuator based on Control Moment Gyros

Goal

- Develop a Control Moment Gyro (CMG) based Attitude Control System (ACS) for Agile Small Satellites
 - Proving the viability of CMGs in an ACS system for Small Satellites
 - 2. Developing a low-cost, miniature Single Gimbal Control Moment Gyro (SGCMG) for Small Satellites

5.0 CMGs for Small Satellites

WWW.SSTL.CO.UK

CMG Background

- Actuators, 'Torque Amplifiers'
- A momentum wheel, gimballed in 1 or 2 axes
 - Single-Gimbal CMG (SGCMG)
 - Double-Gimbal CMG (DGCMG)
 - Variable-Speed CMG (VSCMG)
- Disadvantages
 - Mechanical Complexity, expensive
 - Singularities (No Torque generation)
 - Size
- Spacecraft Heritage
 - KH-11, KH-12
 - Skylab, MIR, ISS
 - Honeywell
 - Alcatel, Astrium (France)
 - Have not flown on commercial s/c yet

- B. Wie:
 - Provides fundamentals of CMGs
 - Using PID control logic (various) for non-linear CMG control
 - Survey of current singularity avoidance laws
 - Novel singularity avoidance law based Singularity Robust law and using modulation functions (deterministic dither)
- Vadali, S.R.:
 - Derive CMG equations for a N-cluster of SGCMGs
 - Proves that a family of initial (preferred) gimbal angles can avoid singularities
- Bedrossian, N.S., Margulies, G. and Auburn, J.N.:
 - CMG fundamentals, description of null motion & singularities

5.2 4-CMG 'pyramid' Cluster

4-SGCMGs-pyramid, $\beta = 54.74^{\circ}$: $h_{CMG-max} = h_0[3.15, 3.15, 3.26]^{T}$ N-m-s

$$\mathbf{h} = \sum_{i=1}^{4} \mathbf{H}_{i}(\boldsymbol{\delta}_{i}) = \begin{bmatrix} -c\beta\sin\delta_{1} & -\cos\delta_{2} & c\beta\sin\delta_{3} & \cos\delta_{4} \\ \cos\delta_{1} & -c\beta\sin\delta_{2} & -\cos\delta_{3} & c\beta\sin\delta_{4} \\ s\beta\sin\delta_{1} & s\beta\sin\delta_{2} & s\beta\sin\delta_{3} & s\beta\sin\delta_{4} \end{bmatrix}$$

Dr. Vaios J. Lappas

METU Aerospace Seminar

• Rotational Equations of Motion:

 $\dot{\mathbf{H}}_{s} + \boldsymbol{\omega} \times \mathbf{H}_{s} = \mathbf{N}_{ext}$

H_s: s/c angular momentum

ω: s/c angular velocity

• Spacecraft Angular Momentum:

h: CMG angular momentum

I: s/c inertia matrix

• Combining above equations:

 $\mathbf{h} = -\mathbf{u} - \boldsymbol{\omega} \times \mathbf{h}$ u: Torque control vector

• SGCMG h: $h = h(\delta)$

 $H_s = I\omega + h$

• Need 4-SGCMGs for full 3-axis control

5.3 Singularity Avoidance Steering Laws

WWW.SSTL.CO.UK

- $\dot{\mathbf{h}} = \mathbf{A}\dot{\boldsymbol{\delta}}$
- Where A is a 3 x 4 Jacobian Matrix

 $\mathbf{A} = \begin{bmatrix} -c\beta\cos\delta_{1} & \sin\delta_{2} & c\beta\cos\delta_{3} & -\sin\delta_{4} \\ \sin\delta_{1} & -c\beta\cos\delta_{2} & \sin\delta_{3} & c\beta\cos\delta \\ s\beta\cos\delta_{1} & s\beta\cos\delta_{2} & s\beta\cos\delta_{3} & s\beta\cos\delta_{4} \end{bmatrix}$

• Inverse Kinematic Solution (Pseudoinverse)

 $\dot{\boldsymbol{\delta}} = \mathbf{A}^{+} \dot{\mathbf{h}} = \mathbf{A}^{\mathrm{T}} (\mathbf{A}\mathbf{A}^{\mathrm{T}})^{-1} \dot{\mathbf{h}}$

- Goal is to generate commanded torques and to also avoid 'singular' sets of gimbal angles, where no torque is produced
- 'Steer' angles to more favourable directions, escape, avoid or transit through singularities

- In MATLAB_{\mathbb{R}} and SIMULINK_{\mathbb{R}}
- Satellite Model, CMG Dynamics, Quaternion Feedback Controller

- Used to study the behaviour of a CMG attitude control system
- Test Singularity Avoidance laws, try new ones
- Minisatellite, Microsatellite and Nanosatellite models used

5.4 CMG ACS Simulations (II)

WWW.SSTL.CO.UK

Attitude Control Model

5.4 CMG ACS Simulations (III)

5.4 CMG ACS Simulations (IV)

METU Aerospace Seminar

- 4-CMG cluster in pyramid configuration for full 3-axis control
- Main requirement: Generate $N_{w-reg} = 52.25 \text{ mNm} (30^{\circ} \text{ in } 10 \text{s})$

For a SGCMG:
$$N_{CMG} = h \times \delta$$

- Selection of **h** and max. gimbal rate is a trade-off between performance, size and singularity avoidance
- Keep h as small as possible (less mass, volume)
- Avoid using large gimbal rates leading to large gimbal angle excursions, thus singularities
- A max. gimbal rate of 7.5 °/s is used which is larger than the max. angular rate of satellite when doing a 30° maneuvre in 10s
- Ensures torque amplification throughout a maneuvre
- Simulations for a 30° maneuvre in 10s

- Simulations confirm the ability of the CMGs to provide a 3 °/s average slew rate to a microsatellite
- Maximum gimbal angle excursions reach ±36°
- Maximum torque of ~ 50 mNm required
- Simulations were used in an iterative process to determine the best trade in performance/hardware design
- Sizing a CMG, is a trade between the CMG mass, average slew rate requirement, maximum gimbal rate, singularity avoidance and hardware constraints
- Theoretical work indicates some of the benefits of the CMGs for small satellites:
 - Torque/slew rate capability
 - Angular Momentum capability
- Based on the CMG simulations, the CMG design parameters are specified

6.2 CMG Cluster Characteristics

Parameter	Value
DC motor mass [Faulhaber 1525E]	30 g
Momentum Wheel 🥢 🥢	150 g
Gimbal motor mass [P10]	9 g
Gimbal Motor Gear box [R10]	6 g
Potentiometer [Sector]	10 g
Couplers (2)	10 g
Power (MinMax.)	TBD
Voltage	5-12 V
SGCMG Mass	200 g
SGCMG Ang. Mom. h_{θ} (ω_w = 20,000 rpm)	0.35 Nms
CMG avionics	50 g
CMG Total Mass	~ 1000 g
CMG Output Torque	52.25 mNm

7.0 Developing a Low-Cost, Miniature CMG for Small Satellites

- AFFORDABLE ACCESS TO SPACE
- The main aims are :
 - 1. To practically confirm the theoretical work (simulations) performed
 - 2. To validate the viability of using CMG's as actuators on a microsatellite in a practical way
 - 3. To confirm the agility and power efficiency that CMGs can potentially provide to microsatellites
- Achieve 52.25 mNm Torque, Low, cost, power, size, mass, use COTS
- Use a staged approach:
 - 1. A Single Gimbal CMG pre-prototype (Mk.I)
 - Demonstrate concept
 - Try various technologies (DC motors, stepper motors)
 - 2. Cluster of 4-CMGs (Mk. II)
 - Use 'mission like' motors
 - Demonstrate CMG benefits (torque, ang. momentum, power, mass)
 - Sized for a SSTL 50 kg microsatellite (e.g. PICOSAT)

7.1 CMG Mk.I Testbed

WWW.SSTL.CO.UK

Dr. Vaios J. Lappas

7.2 CMG Mk.I

7.3 Air Bearing Experiments

- Air-bearing table provides the capability of rotation without significant friction
- Used to test the dynamic characteristics and performance of a model satellite control system during the pre-launch experimental testing campaign on the ground
- Suspended by air, allows nearly frictionless rotation

Dr. Vaios J. Lappas

METU Aerospace Seminar

7.4 CMG Mk.I Experiment (I)

WWW.SSTL.CO.UK

Side view of air-bearing

- Operate CMG from a known angle θ_0 of 25° between the spin axis and the horizontal
- Perform a 50° excursion and return to its initial position
- This will generate a rotation about the air-bearing rotation axis
SPACE CENTRE 7.4 CMG Mk.I Experiment Animation WWW.SSTL.CO.UK

Top View of Air-Bearing Platform

- CMGs rotate air-bearing platform
- Use stopwatch to time angular displacements
- Measure laser beam dot distance
- Use trigonometry to calculate the angular rate of rotating platform

 l_2

7.4 CMG Mk.I Testing (IV)

• AFFORDABLE ACCESS TO SPACE

WWW.SSTL.CO.UK

Rotation of CMG & rotation platform (N_{CMG}=8.84 mNm)

Dr. Vaios J. Lappas

7.4 CMG Mk.I Testing (IV)

Theoretical vs Experimental CMG Mk.I Torques

AFFORDABLE ACCESS TO SPACE

Gimbal Rates (deg/s)

• Theoretical Torque: N

$$N_z = h \dot{\delta} \cos \delta_0$$

• Experimental Torque:

 $N_{CMG} + N_d = -I_{AB} \,\omega_{AB}$

WWW.SSTL.CO.UK

- Theoretical CMG Torque value expected for a gimbal rate of 24°/s is 9.82 mNm
- Experimental value of 8.84 mNm and results to a difference (error) of 9.97%
- Errors due to air-bearing table bias, flywheel imbalances, flexing of the wires, aerodynamics friction
- Maximum angular speed is 11,200 rpm (maximum speed 16,000 rpm) due to aerodynamics friction, less angular momentum

Parameter	\mathbf{CMG}	RW
	E. Microsat	E. Microsat
Mass of s/c (kg)	50	50
Type of actuator	1 CMG	1 RW
Mass (g)	~320	1000
Power Av. Per actuator (W)	0.1-1.2	0.8-3.5
Voltage (V)	5-12	12-16
Max.Ang. Mom. (Nms)	0.0235	0.36
Max. Torque (mNm)	8.84	10
Sat. Inertias (kg-m²)	[2.5, 2.5, 2.5]	[2.5, 2.5, 2.5]
Average slew rate (°/s)	1.23	1.31
Min. time for 30° (s)	24.45	22.876

Dr. Vaios J. Lappas

7.5 CMG Mk.II

- Having tested the capability of the Mk.I CMG, another CMG is designed as part of a 4-CMG cluster, the CMG Mk.II. The CMG Mk.II utilizes:
 - A different and more powerful BLDC motor with integrated electronics (Faulhaber 1525 BRE)
 - A larger flywheel (angular momentum), properly sized to generate the required torque on the Mk.II CMG ($I_{CMG} = 1.7 \times 10^{-4} \text{ kg-m}^2$)
 - The same stepper/gimbal motor (Escap P010/R10) as in the Mk.I
 - New electronics based on a C515 Microcontroller
- Components (motors etc.) can be space graded
- CMG Cluster performance is evaluated through air-bearing experiments

7.5 CMG Mk.II Electronics

WWW.SSTL.CO.UK

METU Aerospace Seminar

7.6 Single-axis maneuvre with two CMGs

AFFORDABLE ACCESS TO SPACE

• $I_{AB} = 0.8 \text{ kg-m}^2$

WW.SSTL.CO.UP

7.7 Experimental Set-up Block Diagram

7.8 Experimental Set-up

7.9 CMG Mk.II Experiment

- Do not take under consideration the wheel and gimbal motor dynamics, or any other internal disturbances such as motor cogging or torque ripple effects
- Torque error reaches a maximum of 0.006 Nm and this is mainly due to:
 - The disturbances that affect the CMG cluster on the air-bearing (airbearing bias, aerodynamic friction)
 - High bandwidth-mechanical reasons (CMG stepper motor backlash, micro vibrations, wheel imbalances and small wheel speed variations)
 - IMU-Gyro noise
- The rotation angle θ expected from simulations is 218.4° whereas the experimental value attained is 209.8°
- Open-loop maneuver and the disturbance effects of the air-bearing result to an acceptable error of 8.6°

- Electrical power consumption is important small satellite development and operations
- Literature, such as [Schaub 1998], [Schaub 2000], [Roser 1997], [Salenc 2000] mention that CMGs require less electrical power than other actuators such as reaction/momentum wheels
- No theoretical or practical support to this claim
- A comparison is conducted to compare RW vs. CMG power consumption
- A microsatellite 10 mNm RW, minisatellite 20 mNm RW and 52.25 mNm CMG
 (2)
- 40° single-axis maneuvre (1 RW, 2 CMGs) for all 3 actuators/platforms
- In-orbit data used for RWs (Tsinghua-1 RW, UoSAT-12 RW) and vacuum power measurements for CMG
- Measurements are normalised to a 1 kg-m² MOI
- Energy index is introduced to compare actuators

7.11 CMG Electrical Power Consumption

- CMGs perform the 40° maneuvre in 20s
- Identical to previous experiments
- Measurement is for all 4 stepper/gimbal motors + BDCM

7.12 RW Electrical Power Consumption

AFFORDABLE ACCESS TO SPACE

	Tsinghua-1 RW	UoSAT-12 RW
Manufacturer	SSTL (3)	SSTL (2)
		Ithaco (1)
Quantity	3 units	3 units
	(X/Y/Z)	(X/Y/Z)
Type	Brushless DC motor	Brushless DC motor
	Dry lubricated	Dry lubricated
	bearings	bearings
Operation	+/- 0.36 Nms @	+/- 4 Nms @
Range	+/- 5000 rpm	+/- 5000 rpm
	+/- 0.010 Nm max	+/- 0.02 Nm max.
Power	0.2-3 W	2.8- 14.6 W
	(zero to max. accel.)	(zero to max. accel.)
Operation	Speed controlled	Speed controlled
Accuracy	+/- 1 rpm	+/- 1 rpm

7.13 Tsinghua-1 RW Maneuvre & Electrical Power Consumption

Time (s)

SPACE CENTRE

SURCEY 7.14 UoSAT-12 RW Maneuvre & Electrical Power SPACE CENTRE Consumption

UoSAT-12 Roll

AFFORDABLE ACCESS TO SPACE

45 40 35 30 Degrees 25 20 15 10 5 0 50 100 150 200 0 Time (s)

UoSAT-12 RW Absolute Electrical Power Consumption

Dr. Vaios J. Lappas

METU Aerospace Seminar

SURRET 15 Electrical Power Consumption Experimental Data

AFFORDABLE ACCESS TO SPACE

WWW.SSTL.CO.UK -

Parameter	UoSAT-12	Tsinghua-1	CMG
MOI (kg-m²)	40	2.5	4.1
Time (s)	200	150	20
Torque (mN-m)	20	10	52.25
Mass (kg)	3.2	1	0.585 ¹
Avg. Power (W)	2	0.45	1.61
Scaled Power (W-kg-m ²)	0.05	0.16	0.39
Scaled Energy (J/kg-m ²)	10	27	7.85

- ¹Mass for two CMGs, unpackaged
- Single axis 40° maneuvre
- Energy index reflects the energy accumulated during a maneuvre on a normalized 1 kg-m² MOI platform
- CMGs prove to be the least power consuming actuator with an energy index of 7.85
- 21.5 % more efficient than the UoSAT-12 RW power consumption and 70.9 % more efficient than the Tsinghua-1 RW

Dr. Vaios J. Lappas

METU Aerospace Seminar

- Practical work confirms the theoretical findings on the advantageous use and performance of CMGs for agile small satellites
- Two CMGs designed (Mk.I, Mk.II)
- CMGs were evaluated in air-bearing experiments replicating single-axis maneuvers
- CMG Mk.I generated a max.torque of 8.84 mNm, CMG Mk.II a max. torque of 38 mNm, during air-bearing experiments
- Experiments indicate the better electrical power consumption when utilizing a CMG cluster when compared to a RW system
- CMG Mk.II maximum power was found to be 1.614 W
- CMGs are shown to be more power efficient by at least 21.5 % from reaction wheels, with a mass saving of 41.5 % to the smallest (Tsinghua-1) RW
- With a mass of about 1.17 kg CMGs were shown in a practical way to potentially be an efficient and highly capable means of controlling agile microsatellites

8. Application: BILSAT CMG

• AFFORDABLE ACCESS TO SPACE

CMGs for BILSAT-1

- TUBITAK-BILTEN initiated a call for Turkish and SSTL payloads for BILSAT-1
- Numerous payloads suggested
- Payloads selected:
 - Turkish: Coban, Gezgin
 - SSTL: Propulsion, GPS Attitude Determination
 - SSC/SSTL: CMGs...
- Payload Selection: September 2001
- Unofficial approval for CMGs: June 2002
- Time to design CMGs: 6 months ! (not...!)
- Payload: A twin (2)-CMG cluster for rapid pitch axis control

BILSAT Payloads

AFFORDABLE ACCESS TO SPACE

SURREY BILSAT Additional Payloads (I)

GEZGIN

JPEG2000 DSP Card;

Real Time image compression;

Dr. Vaios J. Lappas

SURREY BILSAT Additional Payloads (II)

AFFORDABLE ACCESS TO SPACE

WWW.SSTL.CO.UK

Propulsion system

System Features

- -Propellant butane
 -System dry mass < 6kg
 -Propellant mass = 2.3 kg
 -15 Watt resistojet thruster
 -Thrust ~ 50 mN
 - -Delta V ~ 9 m/sec

A propulsion system will be installed on the satellite to make semi major axis corrections. A single thruster fires through the Centre of Gravity to perform orbit change manoeuvres

BILSAT Additional Payloads (III)

AFFORDABLE ACCESS TO SPACE

WWW.SSTL.CO.UK

GPS Receiver

A GPS receiver:

: To give position knowledge = +/- 50 m

Control Moment Gyro (CMG)

A Control Moment Gyro to improve the agility of the satellite \cdot Rapid Pitch axis control (2 $^{\circ}\!/s$)

REY BILSAT-1 Satellite Architecture

AFFORDABLE ACCESS TO SPACE

SPACE CENTRE

W.SSTL.CO.Uk

BILSAT-1:a small satellite based on enhanced micro satellite platform of SSTL

Core: standard SSTL self supporting stack of equipment boxes

Below earth Facing Facet : enclosure that holds some of the customer built payloads

Nano modules: There are also nano modules which are non structural elements

BILSAT-1 Project Status

WWW.SSTL.CO.UK

AFFORDABLE ACCESS TO SPACE

- Spacecraft in AIT
- EMC Testing this week
- TVT
- Vibrations
- Launch scheduled for July

Structure qualification tests successful

WWW.SSTL.CO.UK

BILSAT Attitude Determination and Control System (ADCS)

BILSAT ADCS Subsystem (I)

AFFORDABLE ACCESS TO SPACE

BILSAT can achieve

- attitude control +/- 0.02 deg
- attitude knowledge of 0.006 deg

BILSAT sensors

- four sun sensors,
- four rate sensors,
- two magnetometers
- two star cameras

BILSAT actuators

- four reaction wheels,
- three torque rods,
- gravity gradient boom

A GPS receiver is also used to obtain orbital position information of +/-50 m

BILSAT ADCS Subsystem (II)

AFFORDABLE ACCESS TO SPACE

Component	Manufacturer	Performance	Constraints
Star Camera	SSTL – Altair-HB	Field of view: 15.74° x 10.53° Pointing accuracy (<15 arcsec 1 sigma): Sensitivity: Down to mag 6.0 Operating bandwidth: 1Hz Max tracking rate: 0.5 %s	Mass: 1.7 kg (including baffle) Size: 150 x 150 x 285 mm (including baffle) Power Supply: 16-50 VDCPower: 2.8W (@ 28V) average Temperature: -10 to +50°C
2-Axis Sun Sensor	SSTL	Field of view: 60 x 60 Pointing accuracy: 0.5 deg	Mass: 300 g Dimensions: 95 x 107 x 35 mm Operating Temp: -50 to +80 degC
Solid-Sate Rate Sensors (Gyros)	BAE - SIRRS	Rate Range: ±50 deg/s Long-term Bias Stability: 0.2 deg/s over 1 year Bias Stability: 0.002 deg/s over 100s Output Noise: 0.01 deg/s/√Hz	Mass: <35 g Size 31.6 x 31.6 x 17.2 mm Supply Voltage: +/- 5V Operating Temp: -40 to +75 degC
Reaction Wheels	SSTL	Angular Momentum: 0.42 Nms Torque: 10 mNm	Mass: 1.1 kg Dimensions: 100 x 101 x 92.5 mm Power: 24-32V 1.2 W @ constant speed 5.6 W @ Max Accel 0.8 W @ Zero Speed

WWW.SSTL.CO.UK

CMG Design

BILSAT CMG

- Attitude Actuator
 - High torque capability, High stability
 - Exceptional performance for small satellite
 - Fast slews (30deg in 15s for 130kg spacecraft)
 - E.g for tactical imaging, TDI, target tracking
 - Developed by University of Surrey/SSTL/ESA/BILTEN
 - First flight on BILSAT Q3 2003

Dimensions	135 x 155 x 190 mm
Mass	2.2kg
Power	12W peak
Torque	95mNm

- 2°/s average slew rate capability (pitch axis)
- Demonstrate the principle of a CMG
- Has to fit in the available volume on BILSAT-1
- Mass ≤ 1.5 kg per CMG

Agility-Slew Rate Requirement

WWW.SSTL.CO.UK

- AFFORDABLE ACCESS TO SPACE
 - Assumptions:
 - Average 2° /s slew requirement (40° in 20s)
 - Use BILSAT-1

- SSTL actuators: 3-20 mNm
- ACS based on RWs :
 - 10% of spacecraft mass
 - 40% of required torque

Dr. Vaios J. Lappas

METU Aerospace Seminar

BILSAT CMG Configuration

WWW.SSTL.CO.UK

• For a 2°/s average slew rate capability (pitch axis) for a 130 kg platform, a 95 mNm torque is required

- Twin CMG payload in parallel configuration
- CMG h = 0.28 Nms, Flywheel speed operating at 16,900 rpm, gimbal rate of 9°/s
- Can vary flywheel speed and gimbal rate (> $9^{\circ}/s$)

Dr. Vaios J. Lappas

METU Aerospace Seminar

CMG Simulations

Dr. Vaios J. Lappas

METU Aerospace Seminar

CMG Electronics

CMG Mechanics

• AFFORDABLE ACCESS TO SPACE

CMG Mechanics - Mass

- Mass ~ 2.2 kg per CMG
 - 420g Phytron Motor
 - 100g Faulhaber Motor
 - 90g 'Flywheel' (aluminium)
 - 100g Counterbalance (brass)
 - 500g Electronics (in enclosure)
 - 400g Containment enclosure
 - 200g Support bearings
 - 200g Axle, interface structure, fasteners, cable, etc
 - (all figures approximate to show breakdown)

Other CMG Activities

• AFFORDABLE ACCESS TO SPACE

- Working on BILSAT CMG payload exploitation
 - In-orbit data, compare CMGs to RWs, use CMGs as RW/MW/VSCMG
- Developing a Closed loop, hardware-in-the-loop, CMG cluster simulator
 - Constrained 3-axis simulator
 - 4-CMGs in pyramid configuration
- CMGs selected as an experimental payload on ESA's Proba II research satellite
- Developing CMGs for Minisatellites (ESA)
- Developing new CMG algorithms, Singularity Avoidance schemes, nonlinear control strategies
- Modelling of CMG motor dynamics
- Collaboration with Prof. B. Wie (ASU) and Prof. P. Tsiotras (Georgia Tech.)
- Collaboration with METU (Aerospace)?

9. Future Work

- Planetary Ascent Vehicles (PAV): Small Rockets...
- Mars/planetary sample return missions will require some means to transport samples of planetary soil back to earth
- Need to ferry these samples from the planet's surface to an orbiting return spacecraft
- Need to develop a small rocket to take a 1 kg sample to a low Mars orbit (LMO)
- Surrey working on the conceptual (systems) design and Guidance, Navigation and Control System (GNC)
- GNC system baseline configuration: TVC, single cold gas engine, roll thruster, IMU

SURREY 9.1 Planetary Ascent Vehicles (PAV)

• AFFORDABLE ACCESS TO SPACE

SURREY 9.2 Planetary Ascent Vehicles (PAV)

AFFORDABLE ACCESS TO SPACE

- Develop GNC system in MATLAB/Simulink
- Perform systems analysis of PAV:
 - 1 kg sample payload
 - 3 Astronauts as payload
- Demonstrate concept viability using software//visualisation tools
- Demonstrate Thrust Vector Control (TVC) GNC principles with closed-loop, hardware-in-the loop experiments
- Developing the software/hardware for the experiments

9.2 Micro-UAVs

- New research topic
- Use Surrey's innovative, low cost design approach
- Design a micro UAV (mass 2-3 kg, range 2-5 km, low power) for low cost civil/military reconnaissance
- Payload: Optical instrument for real/near real time imaging
- Activities:
 - Sizing of micro UAV
 - Design of RF link (laptop based)
 - Design of imager electronics
- Design drivers: Low cost (< \$1000), simplicity, ease of use
- Applications: Forest fire reconnaissance, refugee/border monitoring, military battle field reconnaissance

- CMGs can be an attractive, efficient, novel, alternative ACS systems for agile Small Satellites
- Proven that **CMGs** are viable for agile small satellites and can potentially make them more efficient, profitable and versatile platforms than before
- BILSAT CMGs will be the first commercial CMGs in the world to fly in space, perform actual mission tasks (stereo-imaging)
- Exciting research topics in controls (space, aeronautics)
- Collaborate with METU-Aerospace
- Surrey offers MSc, PhD in aerospace/satellite engineering

Questions?

